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Lecture Course: “Standard Model and its application
for precision experiments at Z-resonance”

OUTLINE

1. Introduction:

e Prelude:
Standard Model (SM) — an example of QFT — a tool for precision
calculations in modern High Energy Physics (HEP);

e Quantum fields for particles in the SM;
e A QFT reminder;
e The notion of Input Parameter Set (IPS);

e QED Lagrangian and Feynman rules.

2. Standard Model Lagrangian building;:

e SM Lagrangian in ¢ gauge, gauge transformation and invariance;
e Gauge fixing, unphysical scalars and Faddeev-Popov ghosts;

e Basic gauges, t’'Hooft-Feynman, Landau, unitary and Ry;

e Scalar sector, tadpoles;

e Fermionic sector, masses and mixing;

® (QCD sector of the SM;

e Feynman rules in the SM.

3. Tools for precision calculations:

e N-loop diagrams and N-point functions;
e Feynman parameterization; dimensional regularization;
e Passarino—Veltman functions and reduction;

e Infrared and ultraviolet divergences;

e Special Passarino—Veltman functions.



4. Towards precision predictions for experimental observables:

e Calculation of simplest QED diadrams;

— bosonic self-energy;
— fermionic self-energy;

— QED vertex function;
e Massless World, QED corrections for decay rates;

— Phase space in n dimensions;
— QED vertex function;

— Bremsstrahlung in n dimensions.

5. One-loop diagrams and amplitudes:

e More self-energies and their properties;

— Two ways of calculation of decay rates;

— Dispersion relation for photonic self-energy (vacuum polarization);
e More vertices and their properties;
e Renormalization for pedestrians: OMS-scheme;
e Parameters Ar and dp;

e Examples of finite one-loop amplitudes;

® A short review of higher order corrections.

6. Precision calculations for LEP1/SLC:

e Status of theoretical predictions;

e Status of experimental data;

e Indirect limits on Higgs boson mass;

e Comparison of theory with experiment;

e Future of precision high energy physics;

e Our group and plans.
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Why these lectures?

Objectivities:

During several last years a new discipline was born Precision High-
Energy Physics - PHEP, both in experiment and theory.

Experiment:
e Past: Z resonance physics at LEP1 and SLAC, unprecedented
statistics, per mill level precision of measurements;

e Present. unexpected PHEP at LEP2!
e Bright future for PHEP at the nearest colliders:

— TEVATRON, also approaches PHEP standards;
— LHC also expects to be a typical PHEP facility;

— LINEAR COLLIDER (LC), e.g. in GigaZ phase of LC
(Z resonance mode) 100 times richer than at LEP1 statistics.

Theory:

Success of the SM in description of LEP1/SLC data. The SM finally
strenghthened itself as QFT capable for precision calculation in HEP.

This status of the SM was achieved during nearly 40 year’s heroic efforts of a large community of
theorists’ tracing back to pioneering papers by S. L. Glashow, S. Weinberg and A. Salam in the
beginning of 60’s, and finally recognized by the decision to award the 1999 Nobel Prize in Physics
to G. t’Hooft and M. Veltman “for elucidating of quantum structure of electroweak interactions
in physics”, and for “having placed this theory on a firmer mathematical foundation”.

Subjectivities:

e worked for about 20 years in the field of PHEP; recognize common
work with Tord Riemann, started in 1983 in BLTP;

e was deeply involved in the LEP1/SLC analysis within the frame-
work of the ZFITTER project and CERN Workshops (at least four)
dedicated to precision calculations for experiments at LEP;

e Last, but not least the book written together with Giampiero
Passarino.



Why such lectures?
such - based on our book, biased towards calculations.
Objectivities:

e book — we tried to show how the SM works for precision calcula-

tions of observables in ee~ annihilation;

e precision calculations consume a lot of mathematics;

e creation of SCHOONSCHIP was specially mentioned in the deci-
sion to award the 1999 Nobel Prize to Prof. M. Veltman;

e nowadays, all the cumbersome diagrammatic calculations are done
with algebraic computer systems;

e lectures —an introduction to a demonstration of our site brg. jinr.ru,
where we begin collecting everything what was done by our group;

Subjectivities:

e it is our way of understanding physics by means of calculations;
when working on the book, we liked to say:
We do not prove Ward identities — we compute them.

e lectures follow the same approach:;
e first five lectures are self-contained and may be studied separately:;

e lectures are appearing in CERN-JINR 1999 School Yellow Report,
CERN 2000-07, 27 June 2000.

Remarks:

e Lectures are not a simple extraction from the book.
[ see them as introductory and complimentary to the book.

e Both in the book and in the lectures the Pauli metrics is used, i.e.
for an on-mass-shell momentum one has: p* = —M?2.
Veltman — Passarino

Bilenky — Bardin



Quantum Fields of the SM and their Properties

Three generation of fermions or matter fields:

)= () 1) (5
5)- (66

They possess masses, my, charges, () (in units of positron charge),

and third projection of weak isospin, 1}3):

v | U D v [ U D
_ (3) _
e I IR B A A R R
3 3 2 2 2 2
Gauge fields:
Vector bosons Unphysical scalars ~ Faddev-Popov ghosts
LN AV VAN AV 2 A - | — — Y4
A VaVaVa Vi (MZ) ________ ¢0 ............. [ — Y?
AN\ W:t(MW) e - ¢i ............. [ Xi

[possess physical charges and unphysical masses

and unphysical charges]

Higgs field:

-------- H (M,) [scalar, neutral, massive]

00000 g [vector, neutral, massless; possesses strong interaction]



Equations of motion and Lagrangians

Basic fields: scalar neutral and charged: ¢° (z), ¢~ (z)
spinor: ¢ (), ¢ (z)
electromagnetic: A, ()

vector massive, neutral and charged: 7, (z), W7 (z)

satisfy equation of motion, free, or with sources.

Equations of motions for free fields:
Klein-Gordon: (IZI — M2> ¢’ (z) =0, = 0,0,
09" () Oug™ (2) — M2¢+ z) ¢~ () =
Dirac: (@+m)y(z)=0
Maxwell: 0F,, =0, F,=0,A,—0A,

Proca:  OuFuw —M.Z,=0,  Fu=0,Z,— 0,7,
Relation between a Lagrangian £ and equation of motion
Euler-Lagrange equation:

oL oL

— — Opg=——=0

dp T 0(0ap)
where all fields ¢ and all their derivatives dp (@ = ¢°, ¢, ¥, ¥, As, Z,)
etc., should be considered as independent variables at variation.

Example of neutral vector field

1 1
L= = Fuwku - §M02ZMZM
and computing derivatives

oL oL

=-M?2Z, ——=-F,
aZy 0 7 d (aMZV> g
oL oL

Opmaa~ =0 F — M(]?Z,, =0

0Z, "9(0,7,)
Note 1/2 in the Lagrangian for neutral fields contrary to the £ for
charged fields. W= are independent and 2 doesn’t arise at variation.
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Example of QED. The Lagrangian with interaction

,C:—iFuyFuu_E(ﬁ_ileA_Fm)w? A:Aﬂﬁyﬂ

Compute derivatives over all independent fields and derivatives

oL — oL
aAV - wzle7V¢7 8(@/1114”) - _F,ul/
oL oL
— = — (D —ie +m) Y, — =0
oL — oL _
— = — (—1e +m), = —
and the system of three Euler Lagrange equations is
oL oL —.
8—14,/ — aua (a,uAl/) — wzle7V¢ + aNFNV =0
oL oL :
@—@m = — (@ —ieQul+m)¢ =0
I

oL _, oL
o O (0u)

or equivalently

= —¢ (—ieQA+m)+ 0,1py, =0

apFw/ — —ZleE%ﬂP
P+m)y = ieQhy
V(@ —m) = —ieQ A

that is Maxwell equation with current (source) and two equations for
¢ and Dirac-conjugated field 1) with sources.

In QFT language one says that sources emit/absorb e*e™ -pairs,
~ve~ and ~ye™, correspondingly.



S matrix and amplitude of a process
A process

pL+p2 = pi+pyt--

P = pi+po, initial momentum

P = pi+py+---, final momentum
(p; denotes simultaneously a particle and its 4-momentum)
is characterized in QFT by a matrix element:

(fIS = 1]i) = (fIR[i) (2m)" 6 (P' = P)
where S matrix
S = T{exp [i/[,I (z) d4:c]}

is derived from an interaction Lagrangian, £;, with the aid of a time-

ordering operation, T'.

Ly o< coupling constant, that is usually small and a perturbation
expanston for a process amplitude is being developped.

Quantum fields which the Lagrangian is made of, may act on initial
and finalstates |i) and ( f|, giving rise to plane waves describing in and
out particles, or contract with each other, giving rise to propagators.

Feynman rules for external lines, vertices and propagators offer very
transparent way of construction of process amplitudes, order-by-order

in perturbation theory:.

Typical Feynman rule for an external line

11 i
P - (27r)3/2\/2_pox[1’u(p)’€“<p>’eu(p)a---]



Cross-sections and decay rates
Total transition probability (in whole space-time)
1
(27

AWy =] (1RN) [ (25)°6 (P = P) o [ Pty -

Transition probability in unit of time per unit of volume
dWyi _

T -\ |2 4 I 300! A3, ...
dugi = Jim T =] (FRI) | 2n)'5 (P = P)d*pld'sh
Differential cross-section
dwy;
doj; = 1
J

where j is the initial flux

\/(]91]92)2 — m%m%
(p1)g (P2)g

J = p1p2

with
1 1 1
and N, =
(2m)’ " 2n)? 2 (r),

pPi =

the differential cross-section becomes
1

dO’fZ' =

| My; |7 dD,
4\/(]91]?2)2 — mim3

where

d®, = (21)* 11 &p 5(’1p4_.P)
T e 2 (), S

Process matrix element squared

Nou N, IL NG | Myi [P= 3 {FIRI) [P

2

is defined with separated out N, and should be understood as aver-
aged over initial and summed over final spin degrees of freedom.

9



For the decay rate of the process
P pl4pht
one has

dwﬁ

s =
! p

where p = o3 is initial density.

Similarly one gets
1
dly = — 2 do,
si = op | Myil

Note a difference with PDG convention: (27)" is shifted the phase
space. This is convenient for calculation in n dimensions.
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Input parameters in the Standard Model

Theory parameters N,
Conventional QED  — e M 2
Extended QED — € Me my, m,

My, M my

my Mg myp 10

EW Standard Model — + M M M

w Z H

4 mixing angles 17
Conventional SM -  Fa 18
Extended SM —  + My, my, my,

4 mixing angles 25

Number of parameters is large, however, this is trivial consequence of
large number of fundamental fields and objective complexity of
Nature. This number, however, is minimal :

- three generations is a minimal number, needed to have CP violation,
which exists in Nature, remember

(Ng - 1) (Ng - 2)
2 7

all 9 fundamental fermions are experimentally found;

- three gauge bosons is a minimal number, needed to describe all EW

interactions existing in Nature,

all 3 gauge bosons are experlmentally found;

- fermionic mixing is unavoidable and exists in Nature both in hardonic

and leptonic worlds, CKM mixing is experimentally well mea-

sured, v-mixing is possibly discovered;

- only Higgs boson is not yet found. There are indirect indications.

Nphases = N, — number of generations
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The Standard Model is not able to calculate these 25 parameters
(in this sence the SM does not predict them).

This is why people believe that some day a better theory will be
discovered.

This is why people want to find some experimental indications on
new physics beyond the SM and built new accelerators, LHC...

So far, neither experiment has found strong evidences of new physics,
(situation with the description of all v -data has to be clarified yet)
nor theory proposed the explanation of the whole mass spectrum of
fundamental particles ranging

from parts of eV for lightest neutrino
to 175 GeV for heaviest top quark
more than 12 orders of magnitude

Standard Model is able to calculate any experimental observable
O;"? in terms of an Input Parameter Set (IPS). We define

IPS = 25 parameters
and what we do within the SM, symbolically
O« Other (IPS)
Input Parameters are experimentally known with different precisions:

me = 0.51099907 4= 0.00000015 MeV ~ ~ 3 x 1077

M, = 91.1871 £ 0.0021 GeV ~ 2x107°
M, = 80.394+0.042 GeV ~ 5x 107
m; = 174.3+5.1 GeV ~ 3 x 1072
M, < 215GeV (95% c.l.) indirectly

Precision measurements provide constraints on Input Parameters.
This is how one may extract an information on yet unknown param-
eters (or improve our knowledge of poorly measured ones).

This shouldn’t be mixed with prediction in above mentioned sence.

(W, Z, t, H-story).

12



Conventional QED.
The electron anomaly a, = (g. — 2) /2:

a®™ = 1159652193(10) x 1072

€

a = 1159652140(27) x 1072 up to fourth order O (o)

(&

8 digits agreement! Can’t be by chance.

Conventional EW.

The Z resonance observables measured at LEP1 (CERN) and SLC
(SLAC) with

experimental precision < 1073
Therefore, one needs
theoretical precision ~ 2.5 x 107*

Number of free parameters in fits of Z-resonance observables

Lepton masses are known very precise, the worst
m, = 1777.057030 MeV < 107*

is infinitely precise in typical LEP1 precision scale 1073

f
7()7
f

S
2

Vacuum polarization

leads to
> In
fomy
no problem for leptons.
Light quark masses should be replaced by the experimentally measured
quantity o (e*e™ — hadrons) — « (M;)
So, we are left with 6 parameters only (the standard SM IPS)
a(M2)  ag(MZ) my M, M, M

Z w H
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And for three of them
aS (M;) my M

w

reach information is available from the other then LEP1/SLC measure-
ments.
Number of free parameters is very few!

More on coupling constants, typical scales

LEP typical scale: /s ~ M, — 200 GeV
typical EW scale: 100 <+ 300 GeV

a(0)L = 0.169 up to third order in QED O (a*L?)
L=In2—1~23ats= M
) az = 1/128.9 up to second order in EW sector O (o)
o (M;) — 0.1194+0.003 up to third order in QCD sector O (ai)

mixed corrections are also needed

O (aay), O (aa2>

S

Since

M. ~ 80 GeV
M, ~ 91 GeV
my ~ 175 GeV
M, < 300 GeV

the calculation must be exact in all these masses. Since the next after
top heavy fermion b-quark has mass ~ 4.5 GeV, it is sufficient to keep

first order in

m;
S

all the other masses may be safely neglected.
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LEP tandems

ZFITTER

D. Bardin, M. Bilenky, P. Christova, M. Jack,
L. Kalinovskaya, A. Olchevski, S. Riemann,
T. Riemann

GENTLE/4fan
D. Bardin, M. Bilenky, J. Biebel, D. Lehner,
A. Leike, A. Olchevski, T. Riemann

TOPAZO
G. Montagna, O. Nicrosini, F. Piccinini,
G. Passarino,

WTO, ZTO
(5. Passarino

JCICMC
S. Jadach, B. Ward, 7Z. Was

KORALW
S. Jadach, W. Placzek, M. Skrzypek, Z. Was,
B. F. L. Ward
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QED Lagrangian

1 1

Lhap = = Pl = 5 € = £y @+ m) vy

where
1
F.=0,A,—0,A,, d = 0V s C* = —g LA,

We use the 4 X 4 representation:

o O —’iTj - ) o I O
fY]_ (ZT] O )7 ]_172737 74(0_[)

O -1 10
’75—7172’7374—(_1 O)’ I_(01)7 O—(

Properties of v matrices

VYo + VoV = 20, 7: = Tu> 7/3 =1

Pauli matrices,

(01 = (1o
T=l1o0) ™7 \i 0) 37 o -1

and their properties

Ti:Ti+7 TiTz’+:]7 T =1
1 1 . 1 .
57'7;75 il = ZsijkéTk TiTj = 53']' + 1€k Tk

1
Ti SU(2) generators

1
U:exp{—ién)\i}, Uut =1, detU =1
Free-particle spinors satisfy the following relations:

(ip+m)ulp) =0, (—ip+m)ov(p)=0
u(p) (ip+m) = 0,  o(p) (—ip+m)=0
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Local gauge transformation and invariance
Local gauge tansformations

w}(x) _ €_ile/\(x)¢f(£U)
Gila) = B(a)er
Alw) = Au(a) - BA()

The full Lagrangian EIQED will be invariant under local gauge tansfor-
mations if we replace 0, by covariant derivative

aﬂ — DM = 8# — Z'leAM

1 1

Loep = 1 F P — B € - %:@f (P — ieQph +my) ¥y

(where e is positive and e? = 47, i.e. positron charge, and Q; is
(fraction of charge)xﬂ]@: Qi =-1,Q,=+2/3 and Qs = —1/3)
Proof of gauge invariance

Fl, = 8,A, — 9,A, = 9,A, — 9,0,\(x) — 8,A, + 0,0,\(z) = F,,

m s (20 () = mpp p(z)1hs(x)

V() (0, — ieQrAL) Wi(z) =

U p(@)eD]8, — ieQ (@) — ieQs (Au(z) — BuA(x))|e @Dy (2)
= 0y(z) (9, — ieQA,) Py (x)

Subjecting C* to our gauge transformation

1 1 1
_g 8MAL - _g OpAy + 3 0.0, (), 0,0, = 0, OX(z) =0
we discover a massless, non-interacting ghost field A(z) = Y4(x) with
propagator
[T e ¢
b



Feynman rules of QED:
Could be easily guessed looking at the Lagrangian

p— 1 11 —ip+my
@m)tiip+my  (2m)'i p2+m% —ie

M v 1 1 2 p,upz/
et e e €0

>wm H (2m)* i ieQ; v,

Note appearance of £-dependent term in photonic propagator, con-
sequence of gauge fixing.
Photon propagators in three gauges:

e General R¢, propagator as given above
e Feynman gauge, £ =1
1 0w
(2m)* i p? + ie

e Landau gauge, £ =0

(2m)" @ p” + 1€ p

Usually in QED one uses the Feynman gauge. It is well known that

the &-dependence cancels in the S-matrix for a given physical process.
As example consider any ete~™ — ~* sub-process. The correspond-
ing S-matrix element in the R¢-gauge will have an additional term

—(&=1) 9(ps) (s +P-)ulp-),

which is zero for on-mass-shell fermions by virtue of Dirac equation.
The extra term, proportional to €2 — 1, may be omitted.
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Standard Model (SM) Lagrangian in the R, gauge
Reminder: SM fields content
e triplet of vector bosons B, a singlet B,
e a complex scalar field K, (minimal — one doublet of complex fields)
e fermion families

e Faddeev—Popov ghost-fields X+, Y% Y4

The total Lagrangian is the sum of various pieces.

The first piece is the standard Yang—Mills Lagrangian

1 a 1a 1 0 0
‘CYM — _ZF,UVF/“/ - ZF,UJVF,UV
Fi, = 0,B) — 8,B}+ geaneB, B
F) = 0,B)—0,B,
Yang—Mills Lagrangian is invariant under local SU(2) x U(1) gauge

transformations if in the corresponding free field Lagrangian one re-
places:

’ 0
5992'3 i

g — SU(2) bare coupling constant and g; — an arbitrary hypercharge.

9, — D, =0, — %ngTa -

The physical fields Z and A are related to Bi and Bg by
A . Cop —Sp 33
A N Sg Cy BO
where sy(cy) denote the sine and cosine of the weak mixing angle.

Second piece: the minimal Higgs sector (scalar) Lagrangian
1
Ly =~ (DuK)" DK — i’ K7K — ) (K*K)®

where A > 0 and symmetry breaking requires p? < 0.
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The scalar field in the minimal realization of the SM is

K= , x=H+{v)+i¢’
V2| g
Four scalar fields: ¢*, ¢ and H; H — physical Higgs boson field,

(v) — vacuum expectation value (v.e.v.).
The covariant derivative for the scalar field in SU(2) ® U(1)

2 0
S99 BY) K

The hypercharge g, to be fixed below!
The scalar field can be rewritten as

K:\}E(H+<v>+iqb“7“)(é)

and the covariant derivative as

1 2 a,..a 2 0 - b, b 1
D,K = ﬁ<0ﬂ—§gB#T —§gngu) (H—I—(v)—Hng) (O)

D,K = (@L — %gBZT“ —

= s {outr = Son BT+ )+ Jomies

- a 1 a a, 1 C
+1 lauﬁb - §QBM (H + (v)) — 59913% 98cba,B ¢ T

3]

1 1
(OH + 901 Bl (H + () + S9B1o*

7

. a 1 a (I, 1 C
—t [auﬁb — QQBM (H + (v)) + 299130¢ gé“cbaB Cbb

Similarly
(DK)" = (1,0)

)

Consider the product
+
— (DMK ) D,K
first term of L',S, containing 81 terms!
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Introduce physical fields
1 1
+ 1~ -2 - 1.2 0 .3
Wi = zBuFiB), 7= (8 Fi), =9

Z, = cyB, — syB,, A, = s9B, + 9B,

and collect first of all terms with (v)?

s i)

x% {—%gngg<v> - %gBWW} ( (1) )

__92<’U>2 1.0 ( BO—|—BC C)( BO+Bb b) 1 —
T 8 ( ’ ) g1 I ,uT g1 1 NT 0
a,_a 1 3
(1,0) Bt 0 =B,
1,0)BireBle [ 1) = Bepe
(1,0) B,r°B,7 0] Pulu
2/, \2
97 V)* 1 9010 03 a pa
T g (nguBu+291BuBu+BuBu>
2/,\2 -
g (v) 0 3\2 1 pl 2 2
-8 _(ngu+Bu> +BuBu+BuBu]
and if one chooses g1 = —sy/cp then
= O g owew| = “ae gt vewrw
__8 C_g(ﬂ)_l_ ,u;o__io(,u)_ w "
Higgs mechanism generates masses:
M — bare mass of W boson, M = @
M, — bare mass of Z boson, M, = #
Co

M M
Or equivalently: ¢y = A and (v) = 2—.
9
0
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Continue our consideration of the product — (D,K)" D,K. Sub-
stitute (v) and look at all terms without interaction constant g

—(1,0) % 0.H +iMgB), — i (0,0° — MB) 7]

O.H — iMgB) +i(0,0" — MB}) 7" ( : ) -

1
<] :

Omitting legal kinetic terms like

1 2
) (0,H) etc.
terms which were already considered (mass terms) and observing that
H BZ’O transitions cancel identically, we are left with

- 2 0,0) (080 + B (9,01) 7 ( : )

M o o 1
o (1,0) (0u9°) T (ngg + BZTb) (O ) —
Taking into account

1

(1,0) (BZTcﬁuqﬁbTb + aMQSCTCBZTb) ( 0

) = 2641 B)9,,¢°
we arrive at
— M (q1B0,¢" + Bi0,0") —
or in terms of physical fields
— M (%@Z,@@O + W, 0.0 + W;auqﬁ)

And this is criminal since the Lagrangian shows up Z — ¢°, W+ —
¢T transitions of the zeroth order in the coupling constant and their
contribution must be summed up to all orders if we want to develop
perturbation theory.
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To circumvent this problem we add a gauge-fizing piece to the La-
grangian, Lgf, that cancels these mixing terms.

However, it breaks the gauge invariance and we must introduce
Faddeev—Popov ghost fields to compensate this breaking.

The gauge-fixing piece is (generalized R, gauge)

La = —CC— [€) + (Y]

where
Cct = —iauAu
A
C’ = —glzauzﬁgzgqso
= —28MWj+§M¢i

Note appearance of three different gauge parameters associated with
three different vector fields: W=, Z, A.
Consider for instance

1 e 1( 1 M 4\
57 =3 (g ey
11 M 1/ M .\°
= e (0 Z,)” + P (OuZy) ¢° — 5 (§ZC—0¢O>

The first and third term modify Z propagator, while the second term
together with illegal Z — ¢ transition gives full derivative

% (Zuau¢0 + (auZu) ¢0> — %au (ZM¢O)

Co Co

that does not contribute to the Lagrangian.

In order to define the FP ghost Lagrangian we must subject CA%*

to a gauge transformation. This is, in principle, similar to what we did
in QED. Contrary to QED, there are ghost interactions in the SM.
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In the R, gauge
1 1
Loy — (DuK)" DK —Che — (c?)? - . (C*)’ = Lprop + L5
The quadratic part of the Lagrangian, Lp;op,

Lprop — a W+(9 W + (1 — §) 3 W+(9 W_

1 1

—éaluzyauzy + 5 ( 52) (a Z )

1 1 1
- OuAu0u A+ ( 52) (0,A,)°

1 + — 1 0 0
—50uHOH — 0,67 0,¢™ — 0,00t

1M

_MZWJW»L _ Ec—gzuZﬂ

_ 1M 1
_£2M2¢+¢ _552_2¢0¢0__MHH2
Cy 2

The scalar field propagators are trivially guessed from Lp;op

1
_ M¢+a“¢_ _ £2M2¢+¢_ — 2 52M2 etc.

The rule of correspondence for vector fields is more complicated
1 1 1,
_iauZ,,aﬂZ,, +3 ( 52) (0,7,)° + §MO Z,Z,
5/W _ Pubv PuDv

p? p?
N +
pP+ME o HpP+ M2

It is proved in standard textbooks on QF'T.
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Feynman rules for propagators (full collection)

Propagator of a fermion, f

., TREmy
f P>+ mj
Vector boson propagators
1 2 pupl/
VB VV\VAVVAVA F{‘SWJF(fA_l) p2}
1 2 p,upl/
AR VaVaVAV PR VT {(5W+(§Z—1) Pt e

+ 2
W AN Ve {5W +(&-1) EEWIYE

Propagators of unphysical fields

.......................... $a
Y4 p?
L - &
) M Y M
P& P+& 5
1 3
- - E - - 2 2 2 ............. :I: ........... 2 2 2
¢ p*+ &M X p°+ &M
Propagator of physical scalar field, H-boson
________ 1
H p*+ M2
1
Every propagator should be multiplied by factor ) -
) %
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More about propagators in different gauges

Three forms for W(Z) boson propagator (for Z [ — &,])

1 Pubv
+ 2 m
%4 — m {5;;1/ + (f — 1) p2 T 52M2} Rg—gauge
_ 1 ( 54 pupu> B PuPy
p2 + M2 Ky M2 M2 (p2 i 52 MQ)
_ 1 (5 _ pupzx) X 52 PuPv
P2+ M?2 pv p? P2+ E2M2 P2
_Ow f =1 t’Hooft-F
— m or &= ooft-Feynman gauge

for & =00  Unitary gauge

1 PuPv
— m <5xw — #) for £€=0 Landau gauge

Not all gauges are possible for photon propagator

1 v
A = - {5w/ + (fj — 1) p“]; } Re-gauge
p p
Oy
— # for £, =1 Feynman gauge
1 v
= ]? (5W — pﬁ%) for £, =0 Landau gauge

The physical gauge is recovered in the limit §, —+ 1 and §,,§{ — oc.
Therefore, it is a mizture of the Unitary and Feynman gauges.
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Standard Model Lagrangian, Bosonic Sector

L£rosl = —igep {8,,ZMW/E+W,,_] — ZVW,EJF&/W,:] + ZMWIEJF&/WM_]}
s {D AW = AW O+ AW W)
{ (wiw; ) = (wiw,)’)
+g CQ{Z Z, W+W ~ 2,2,W, W
+g* s} {ALAW,W, — A AWSW,
+g%sgcy {AMZUWIEJFW I—24 ZuW;Wu_}

—gMH{W;Wy—F —Zu7 }

2C9
1

59 (Wil (¢°0,67 = ¢70,8") = W, (6"0,0" — 6°0,4"))

—}—%9 {W+ (HOu¢~ — ¢~ 0,H) — W, (HOu9™ — ¢+6“H)}

lg
+§—9 y (HO.0" — ¢°0,H)
+ig | seA, — SHZM) MWHCb_]

Ch —

+ig | spA, +

Co SQZ ) (670up™ — ¢ 0ug™)

—EQQWJWJ (HH + ¢°¢° +2¢7¢7)

2
~H 22, (HH O 2 - ) 6

1,85 0 485 1 _
59" 2 Wi = g LA W + Sgtsg AW
) Sp _
+ 59289AMH W™ 92_9 (ch = 55) ZuAud™ 6™ — 9P 55 Au A"

where the anti-symmetrized combination

AYBl = AtB~ — A—Bt
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Standard Model Lagrangian, FP Ghost Sector

In order to define the FP ghost Lagrangian we must subject C* to a
gauge transformation:

a a b nc a 0 0 0
B — B+ geucA'BS — 8,A%  BY— B)—9,\",

K — (1 — EgA“T“ — Eggl/\o> K, with ¢ = _%
2 2 Co

' M
H+i¢g! - HEi¢'F %g [(Af” + glAO) (H + 2? + z‘qbo) + 2iAE T

¢’ — ¢’ — 1g (A% + g1A”) (H + 2%> + 39 (AT —AT¢)

2 g 2
1 M ’ 3 0
Transformation to physical gauge parameters
1 7
A = = (AT 4+ A" AN = — (AT —A"
(A A0), (A =A)
A3 = CQAZ -+ S@AA, A = —SQAZ + CQAA
1 2 .2
A+ A = —AZ N4 g A = 0T TNz gg £
Cy Co

In terms of physical parameters

1 A? M '

O = =g (He2T )+ S (et - Avg)
27 ¢y g 2

2 _ 2
Cyp — Sp

1 M '
¢:F — ¢_ — §gA:F (H —+ 2? :l: Zd)o) :‘: %g ( AZ + QSQAA) ¢):F

Cy
Wi — Wj F igAT (coZ, + s9A,) £ ig (cpA” + spA?) Wj — 0,AT
Ay = Au+igsg (MW, — ATW,) — 90"
Zy = Zy+igeg (MW —ATW, ) — 0,07
! 3 0y 0, L (ntri— —r17+
H — H+§(g/\ +gA’) ¢ +§(A W, + AW
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General form of the gauge transformations
C'—C+ (M7 + gL N, i=+7A

Correspondence: of physical gauge parameters A’
to ghost fields X' = X+, X, Y% Y4

AF - XF
A = Y?
AM - v
In the charged sector we obtain:
_ 1 _ _
1
— C — ¢ {—ig\™ (coZ, + SQAM) +ig (C@AZ + S@AA) W, —0,A"}
1
o
1
= C + gDA- — EMPA™ + ggaﬂ{/\_ (coZ, + spA,)}
0 1 : _
—ggﬁu{(CQAZ + spAY) W, }—§§gM (H + z¢0) A
2 Cg — 33 Z = | A -
+§§gM ” NP~ +1&£gse MA@

and a similar one for C*. .
The gauge invariance C* = —EGMW; + &M@~ — C* s restored

if A* are identified with ghost fields X* with propagators

! ;
_|:| _ M2 ............. | —
g 5 X:i: p2 _|_§2M2

and interactions
gX LHXI j=4+.7 A

Where we introduced four more fields: X' = X", X . V", V"
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For the transformation of C* we obtain:

1 1, .. _ _
cA = _gauAu - —Aﬁu[zg.se (AW, = ATW) = 8,07
1 (0 _ _
= C'+ —OA* — —gsp0, (A W —ANW, )
A A
The gauge invariance is restored, if after identification
) .
—ay4 = igSga’u (X_T/V;r — X+Wu_>
€4 ¢,
i.e. Y4 has the propagator
1 3
_D ............. ». ............. —A
&, v P’

and interaction
gVLYXT =47 A

For the transformation of C?:

1 M
Z _ _ 97 740
C gzaﬂ N+£Z Ce¢
1. .. _ _
%CZ—gﬁu{ngQ (AW, = A*W) — 9,07}
M M 1 A%
TN - g H A —g (ANt —ATe
+§ch{ ” 29 o +59(A7¢ ¢)}
= CP—4+0OAN? —¢ %2/\ Y gcyd (AW, = AT W)
¢, G A P :
1. M M, _
—ifzg—QAZH +if,9— (A ¢t — AteT)
C@ Co

giving the propagator of Y




The complete interaction Lagrangian in the FP sector of SM derives
trivially from above considerations:

I _
Loy

igegW, B (0,Y7) X~ - é (0,X7) YZ_
+igeoW,, :2_ (@LY_) YZ _ ;Z (8u7z> X+_
tigsoW ; (@.7") X~ (X7 v
+igsgW,, 2 (0, X )Y*— 51,4 (0.Y") X
+z'gc@§Zu (0, X X" -9, X X°)
+z'gs%AM (0, X" X" -9, X X7
_%QMH (§X+X+ +EX X+ %YZYZ)

(32 82 0

~igeM"— (XTY?¢" - XY

Cy

7: 1 ~57 — i+ <77 + =

+§g§ZMC—0<Y X¢"—Y'X"¢7)
+z'gse§M (XY —X Y49

ng (XTX*¢" - X X ¢

Note trivial rules
Y7 and Y are accompanied by §, and &, correspondingly;

- X® —byf2

—terms Y X~ and Y7 Xt or X XT and X X~ differ by sign for
interactions with all fields but H.
Ghosts are fields satisfying Klein-(Gordon equation.
They possess a charge resembling the fermionic charge.
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Standard Model Lagrangian, Scalar Sector

The interactions in the scalar sector is given by the scalar potential
1
I 27+ + 772
L,=—-pwK K—é)\(K K)
where
- 10
| H + (v) + i¢”, Y,
K = —2 , <U> = 2—
iv2p~ g

KT = %(Hﬂm—igbo,—z\/ﬁqb*)

and for Eé we derive

= _%MQ (H2 4 2(0) H + (o) + (") + 26" 47]
_é)\ {H4 + 4(v)H? + 6(v)*H* + 4(v)°H + (v)* + <¢0)4 +4(p7¢7)°

1o (H2 +2(0)H + <U>2) [<¢o>2 n 2¢+¢—] +4 <¢0>2 q5+¢_}

Collect some selected terms:

constant term, —1)2>2 (,u2 + i)\<’0>2> , irrelevant
linear term, H  —(v) <,u2 — %)\(fu)?) = —(v)B,, vacuum tadpole
quadratic term, H* —% (,LL2 + %)\(v>2 + )\(v>2> = —% (ﬁH + Mff)
() v200] g (s poor)
where convenient set of parameters are
B, =u’+ 2;\2M2, A= gjﬁgf = g’a,, a, = 411]‘]\%

M, — a measurable quantity; A — from g, M, M; o, — from M, M
u? or B, — should be treated as a new parameter, which has to be
adjusted such that the vacuum expectation value of the H field remains
zero order by order in perturbation theory.
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The interaction Lagrangian (omitting irrelevant constant) and mass

1
term ——M? H?
2 H

£; = —0, {2]\;}[ — % [HQ + (qbo)z — 2¢+¢—]}

—ga, M [H® + H (") +2Hg" ¢
_é92aH[H4 4 (¢0)4 92 (¢0)2
AT S +4 (%) T om +4(¢7¢7)]

Tadpoles and their role in proving gauge invariance of building blocks

H
@ - GO R T g
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More about tadpoles

In the Lagrangian, a tadpole constant should appear that is zero
in the lowest order, and must be adjusted in such a way that the
vacuum expectation value of the H field remains zero order by order
in perturbation theory:.

In order to exploit this option fully, we have to renormalize the
vacuum expectation value itself:

M

K= o x=H+2— (1+46) +i¢’
V2i¢~ g

Now we set u® + 2 (A/g*) M? = 0 and, in turn, it is 3; that one fixes

by the requirement of a zero vacuum expectation value of the H field.
The [,é part of the Lagrangian becomes:

L, = —2gMM’3 H — %Mfl (1 + 392@) H?
—% MG [(¢) + 26707 | — goy M [HP + H (") +2Hg* ¢~
1

_§920‘H [H‘l n (¢0>4+2H2 (¢0)2

HE TS +4 () 6T +4(6767)]

Note that the only practical difference appears in the H? term.

From the renormalization of (v) we are automatically led to the
addition of tadpoles in the W — W and Z — Z self-energies and in the
corresponding vector—scalar transitions:

~g*B (M2 2,2, + 2 M*W;W,,)
1 L

They are essential for proving that W, Z and H the self-energies are &-
independent on their mass shells: p* = —M? p* = =M, p* = =M.
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Interactions of fermions with gauge fields
A generic fermion-isodoublet

wz(Z), wL,Rzé(li%w

with a covariant derivative for the L-fields
Dy, = (8u+gBi, T, i=0,..,3
written in terms of generators of SU(2) ® U(1):
7

i
T = ——1° T = ——goI

For the R-fields we have
Dy, = (Ou+gBit)p,, i=0,.,3

0 gs 0
t* =0, t'=—-
’ 2(0 94)

Thus, 1), transforms as a doublet under SU(2) and the 1), as a singlet.
The parameters ¢o, g3 and g4 are arbitrary hypercharges to be fixed
below. The kinetic part of the Lagrangian can be written as

er A - 56
ﬁf/ ’I: _¢L$¢L_¢RID¢R7 g; = _C_Q)\l
Exercise. Consider only (3,0) components:

- EL% (au

(
2

i o(10Y i (1 0
,d) L, _3;&—59923“ 0 1)—2513“(0 1

4),

_ _ 1 ~
— _fLﬁfL - fRafR T 599232 (HL%LUL T deY“dL)

(0 — ( 0
99232[ - 593273) YV, — YV (8u - _932 (93

SY

= —<ﬂ

SH

—(w,

_ 0 g3 0
)it | O — 59928, | °) )

7 — 7 _
+§932 @y — diyude) + 5932 (95urYr + 9adrYudr) —
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Fowds = 5P f Fotua= 57— f

_ 7 _
— —fOf + 1992 wy, (1 + ) u+ dy, (14 75)d] (=s6Z, + chA,)
; B
+,9 [uy, (14 95) w — dy, (1 +v5) d] (coZ, + s9A,)
; B
+9 193y, (1 = v5) u + gadry, (1 — 5) d) (=592, + coAy)

Collect terms with A,

7 —
19{0092 @y, (14 y5) w + dyy (1 + 75) d]

+3¢ [Ty, (1 +5) u — E’Yu (14 s5)d]
+cp (957 (1 = 75) u + gady, (1 — 75) d] | —

First we require absence of axial currents
cpga + S9 — cpg3 = 0, coga — Sp — cpga =0

92— g1 —g3=0, g2+g1—94=0

g = =20\
Cy
— X+ 14+ X3=0, —X—14+X=0

i _ _
— 1939{—)\2 [wy,u + dy,d] + wy,u — dy,d

+ (1 = Ao) wy,u — (14 A E’yud}

7 - . NS
= 5939{(1 — Ao) Ty,u — (14 Ao dvud} = 1eQ, Uy, u + 1eQqd,d

Thus, the parameters \; are fixed by the requirement that the e.m.
current has the conventional structure, iQrefv,f. The solution is

)\2:1_2Qu — _1_2Qd7 >\3:_2QU7 >\4:_2Qd
with the charges

3
Qs =21P|Q
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W= always couples to a V + A current and £ reads

Ly = 5 l@gsleAufwf 15 Zud (If 2Qf83+1}3)75) f]

{ZTW;U’}/M (1+ 75) d+i—= \/_ W dy, (14 75)u

where the first sum runs over all fermions, f, and the second over all
doublets, d, of the SM.

Fermion — Vector Boson Interaction in presence of mixing
. . - /-
Lyt = %: 1959Q s Apfyuf + ZQ—CQZuf% (vf +agys) f

+Z—W+Ufyu (1+7)CD +i—=

2v/2 f

C' — fermionic mixing matrix, CKM+leptonic (neutrino)

D*yu (14 ) C'U

Uf:]](c?)) —2Qfsg , af:1}3)

Correspondence between physical and bare parameters

M
M, < M, MZHMOEC—H, Sy € Sy
Tree-level identities for coupling constants and vector boson masses

2 M2
2 _ & _ 2 _
SW—? 1_M2’ e’ =4ra

a = 1/137.0359895... fine structure constant
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Interactions of fermions with scalar fields
We need not only the field K but its conjugate K¢ too in order to give
mass to the up- and down- fermions.

1 X
K = —2 \/_ ; X:H+<U>+i¢0
25~
= \}Q(H+(v>+i¢“r“)(é)
KC . QK*__L \/§Z¢+
SR T .

_ —\}5<H+<v>+z‘¢w)(g)

The corresponding part of the Lagrangian:
£§ef = —af@LKuR — ﬂfELKCdR + h.c.

K gives masses to up fermions
K¢ gives masses to down fermions
Gauge transformations:

K — (1-— Eg/\“ () 7 — 3ggl/\o (x) I) K, with ¢, = _%
2 2 Cy
K — [1- %g/\“ () 7% + %ggll\o (x) I) K¢
1 1
@D’L — (11— 59/\“ () 7" — 5992A0 (x) I) Y,
/ _i gs 0 0
o= (1-50( 4 ) 0@) v,

and we immediately see that £ is gauge invariant if go = g; + g3 and
go = —¢g1 + g4, the identities which were already established from the
requirement that the e.m. current has the conventional structure!
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Substutute K and K¢ into £

[ H () i o V2ig*
~arb, 5 - uy + 1, 5 i d, + h.c.
- —% (H + 2‘;\/‘[ T, up, + i0,u,¢" + iv2d,u,d”
—% (H -+ 2;\4 Upu, — iﬂRuL¢0 — i\/éﬂRdLCbJr
+\ﬁ/f§ (H + 224 d.d, —id,d.¢" +iV2u,d,¢"
+\ﬂ/f§ (H - %) uu, +idd,¢° —iv2d u, ¢ ]
u,d, = % (14+)d, u,d, = ﬂ% (1—s)d, etc
N —% (H + 2]9\/[> au — iuysug’ + Td (I —5)up™ — %u (14 5)do™
\B/fi (H + 19\4) dd + idrysd¢’ + % U (l—5)deT — L\[m +95) ugp”

The solution for the Yukawa couplings
1

1 my mgq
Ckfzﬁgﬁa ﬂf:_%gﬁ
This part of the Lagrangian
L=~ ?mfff + L

with an interaction

clel — z{z' \gfw lm“ﬂ(lJr%)d—%U(l—%) d]
+’62\/—¢ l (1+75)U—ﬁd(1—’75) ]}

Lo . 1(3) oM
3 (gt T+ igl T T

2
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Fermion mixing
Rewrite the expression for £

fer g — c

It could be generalized

Eger - _m (JL>04 (MU)a’ﬁ K (UR)ﬁ

Ve e
vy 1
v, T
(UR)ﬂ =l 4| = Ur, <dR)5 4| = Dp
c s
t b

(EL)Q - (7677/“77'7ﬂ7 C, f; e[, T, E; S, B)L (U E)
U O MD O
- : b — z
M ( ) .M ( - )
where /\/lgéD are arbitrary complex matrices and O is zero-matrix,

all 3 x 3 matrices.
Substituting scalar fields K and K¢ we get the mass term

er,m g + 9 =

In order to reduce it to usual form, one has to diagonalize the four
mass matrices. This may be achieved with bi-unitary transformations

MU = Z/{;—muuR, MD = Dz_mdDR

where U, Up, D1, Dy are four different unitary 6 x 6 matrices

S A
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Fields with primes U;, Uy, D}, D7, are weak eigenstates. Introducing
mass eigenstates:

UL:Z/{LUé, UR:Z/{RU;, DL:DLDIL, l)R:l)Rl)j12
we arrive at a usual mass term of the Lagrangian

g -
Lem = ——2—Um,U — —=—DmyD
g \/QM m \/§M mg

where m,, and mg are diagonal matrices in 6-dimensional U and D
spaces.
The interaction part

Ege:r,l B \/_ ¢+l

2\[¢ [ D(1 +”Y5)CTU—MD(1—%)CTU]

U(1+)CD ~ 37U (1= %) CD)|

Mfze - 7(3) 0% )
——gH— I —
+§( 59 Mff+zg ;o Mf%f
contains in charge boson sector the mixing matrix

C—(WL)Z(D% &)Z(Dz»)_(% g)

that is not not diagonal because U; and D;, are different matrices.

Some conclusions:

— mixing arises very natural;
— (O, — the usual CKM-matrix characterizing by 4 real parameters;
— (} — its analog in lepton sector;

— complete lepton-quark analogy: extended SM (ESM) is a very
natural extension of conventional SM with massless neutrino;

— Dirac mass terms (refer to Bilenky’s and Carena’s lectures, for
a discussion whether does this contradict to present experimen-
tal data or whether do we really have experimental indications of
physics beyond ESM)
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The QCD Lagrangian

Pleliminaries:

In QCD one uses eight 3 X 3 hermitian matrices A%, a direct general-
ization of the 2 x 2 Pauli matrices, which satisfy

TIA" =0,  TeAA =26y,
1
T Tb __ fabe T¢ K Tb — dabc T¢ _ = 5@
) ] f { ) } [ 3 b

with 7% = —i\®/2. The SU(3) structure constants f are antisymmet-
ric in all three indices and satisty the Jacobi identity while the d are
symmetric in all indices.

The QCD Lagrangian contains three pieces:

— the colour gluon Lagrangian, £,

fer.

— the colour fermion Lagrangian, £

— the colour Faddeev-Popov Lagrangian, £V

The indices a, b, . . . take the values 1, .. ., 8 corresponding to the eight
gluons. The indices 1, 7, ... take the values 1, ..., 3, corresponding to
three colours. An index o designates the quark flavors: u,d, ¢, s,t, b.

1 a a abe a c
Lo = —50,GL0.G), — g5 f *0,GiG) Gy
1 2 pabc rade b e d e
_Z 'gS f f GMGUGMGV
1

£ = Sigg (@' N4)) G

L¥ = B+ g4 [ 0,R'KG,

g — strong coupling constant and
Y o
S 4q’ T
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MS scheme and the running parameters

M S scheme, unit mass u scale,
— the renormalization group (RG) equations for an observable O

;O (95, m, 1) =0

d
M S renormalized parameters depend on the scale y, i.e. they run
MZ d 045(:“) ‘ :ﬂ(()é (M)) _ Z ﬂ(nf) ( ) N+2
dp? | w |95 mo 5 T
(ny) 1( 2 ) (nf) 1 ( 38 )
- —(11-=2 102 — 2
fo 1 ") T = 3/
(ng) 1 (2857 5033 325 2)
P = 5 18 T 5y
(ny) 1 {149753 [1078361 6508 ]
= 3564((3) — 3
B3 6| T o904C(3) 62 T o G|y
50065 6472 5 1093 4
162 s >]"f+ 729 f}

where ny is the number of active quarks (quarks with mass less than
the energy scale ).
The MS scheme is practically implemented within phenomenological
applications of QCD by setting i to a characteristic scale of a process.
Following the RG equation for ag one could give its value at a fixed
reference scale po but it is an established convention to introduce a
dimensional parameter A.
The solution of the RG equation

ag (1, Ayrs) ! L L2 12
— — byIn L + b (In"L—InL—1)+5b
T BoL (L) (BoL)’ [ : ( ) 2]
1 5) 1 1
- b3(L3——L2—2L —) 3bbL——b]
(ﬁoL)4[1 5 —i—2+ 109 23
with coefficients,
_ 2
b, = & : and L=1In NT
Bo Mis
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Feynman Rules for Vertices
The arrow convention:

1. The arrows occurring in lines are denoting fermion lines, or the flow
of electric charge or the flow of the FP-ghost quantum number. An
incoming W™ will therefore be denoted by an incoming arrow.

2. An arrow pointing inwards implies positive charge flowing into the
vertex. For a negatively charged FP field the flow of charge is
opposite to the direction of the arrow, for a positively charged FP
field it is in the direction of the arrow.

3. In vertices all momenta are taken to be ingoing.

— |Fermionic vertices

f f
A : 7 - 9
W< 1eQ Yy M 2269%& (vf + asys)
/ /
u f 1
W— 1 H _ ﬁ
4 i) < 5977
d f
¢’ - r(3)f ¢ . 9 [Md My
_____ igl} ik L 22\/5 lM (14 5) i (1 75)]
f d
— | Tri-linear vertices
W+
7. Ak,
< g (e,50) [ (b — @)+ Gy (a — ), + b5 (k= 1))
p7 /'L q7 a{

W= 44



—gMé,,

i

%y
W+
/,H

7

=
A
qb()

W+ /{:

ABRAN

M \‘\\q
b=
/,H

w- .k

AR

R
\¢+
H

¢’
¢0
/,H

H



— |Quadri-linear vertices

po Bt
(Z,A
vV (8 W—
A%@%W+
ZV ay-
W-p BWwt
W— 1% (83 W+
poo9"
y
(Z, A)¥.
\\
v \qs—
Ap 97
#
«
ZV e
A M P
?\\\
wW-—V \(]5+

_92 (cg, 35) {25/1”504/3 — Opalup — 5uﬂ5va}

—928969 {Qéuy(gaﬂ — 5ua5V6 — 5,uﬂ51/oz}

g’ {20,008 — 0uadup — Oupduat
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Z M /gbo
N . ,
<1 Z)g 805/“/ . 92 5#1/
\\\ 200
ZV \gbo
Zpu (¢ H)
5 0u | o
V \ D) 17 —1 5 ,
:j;% > (1, —1) g° "
w-—Vv \¢+
2 (¢, H)
< )g e(s,uu - (17 1) 925'“1/
WtV \<¢07 [—[)
¢ (¢°, H)
// 1 2 2
i A _H
o (4" H)
, .9
;s v ¥ 1 QMZT
2 o~ 1M
. 1 29 M?2
¢* \gb_

47



— | Tri-linear vertices involving FP ghosts

X Xt
(Z, )47 g (co, s9) p ZaA? g (co, s9) p
VL, ~ ) . Y 3
- e+
.:X— :’YZ,A
W- P 1 W+ P (09 89)
MOV —g-\Cp,S9) P NN gl |P
H "k ( 7 H ‘\“ &, €u 8
Yz X~
:YZ,A Xt
- AP (Ce 59) wrAP 1
AV g\ VBN g5 (co,50) P
ZaN & &) o T !
X+ Y74
Xﬂ: YZ
O :" . + ::'
qbd izng -q?»*:" = M
Xt X~
XT 2 2 = 2
+ 4 Cp— S - 4 . [cg— s
Ll or 2l (Ao
" 0 » 0
Y74 Y74
Y? X* Y?Z
6 4 9., g 4 Lo g4 19
N 207 T ) M . 207
X+t X+ Y?




Summary of Level 1

Standard Model, its Fields and Lagrangian

Gauges:

General R, with three parameters, £, £, ,§,
t’Hooft-Feynman or Renormalizable, all £ = 1
Physical or Unitary, { — 00,§, — 00,§, =1
Gauge Invariance, £ independence

Feynman Rules
Ready to build Diagrams:

— tree level diagrams
— one(many)-loop diagrams

Pauli Metrics
on-mass-shell momentum

1
Np2+M2

p* = —M? — propagator

left projector

1+
YL = 9
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Feynman parametrization

1 1 1
= [ d
AB b “TAz + B —a)
1 1 2T
= [ d
A’B b Az + B(1— o)
1 1 1 1
_ = ['yg d
ABC = h W TAL—y)+yBz +CA— )}
1 —_—
ABCD

N-point function (arrows indicate momentum flow)
|

|
Piy
bq

q+pi 4, dy
P2

__.>._
d
g+pi+p\" 4

P3A

with
di=(q+pi+...+p) +mi, —ie
is reducable to
1 1 17q/L7Q,LLQI/a' ..
/0 dyy/o dx > 5 > \®
(q q : pﬂ'),y,... —I_ mx’y,n_ ZE)

where a = N for N-point function.

The quantities p,, . and m:%y __are linear combinations of external

momenta, p;, and internal masses, m?, p? and (p; + ... + pj+k)2, cor-
respondingly.
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Basics of Dimension Regularization

All is based on only one integral

1 nF<a_ﬂ> m2) 2
4—n d" i 2
R E+mi—io® " TI(a)

by shift ¢ — ¢ — p, one derives

1 n (a — Q) m? — p?
J _ 4—n dn — T 2
(p)=p / 9 (4> —2q - p+ m? —ie)” o ' () ( 112

by differentiating 0,J(p) — 2l (z) =T (z+1) anda+ 1 — q]

T(a—12 2 _ ,2\7°¢
N4—n/ dnq 4y = im? ( 2) m p Py
(4> — 2 - p +m? — i) ['(a) I
by one more differentiation —
2 2\ -
4—n n q,9v .n 1 m°—p
d — 2
K / q(q2—2q-p—|—m2—z'e)a o F(a)( 12 )
1 9 9 n n
X §5W(m —p)[’(a—l—§>+pup,,[‘<a—§>]
Particular case
4—n n 1 _
1 / d"q =0

(¢*)"

o1

)g_a



Divergences counting: poles versus powers

Ultraviolet divergences

W+
7 7
e
Quly (¢ +P),(@+Dp)s
(- 5) s+

J ) (a+p) +M?

qu4v 919v9095
<5W5a5 + 5+ % + .. )

[ d'q i
(¢ + M?) [(q+p)" + M?
In A A? Al
1 1 1

Infrared divergences

J22AN Y
q Y M
Pi1x Q

With p? = p = —m? and Q? = (p; + pa)’

Ay~ [ 221 P2+ 2 (hYay = YYab2) GoF (2= 1) Y5905
g q° [(q +p1)° + m2] [(q — )’ + mQ]

_ / dnq_4p1 “P2Yu + 2 (]617047/1 - 7u7a¢2> Qo + (2 — n) YoV Y3943
@?[q® + 2q - p1][¢? — 2q - 2]

Scalar Vector Tensor
Infrared Finite Ultraviolet
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One-point integrals, A-functions

—Cr
Scalar one-point integral. Needed for tadpole diagrams and in the re-
duction of higher order functions

in? Ay (m) = ,LL4_"/ d"q

1
g%+ m? — ie

Using general formula with o =1

n m2 n/2—2
Ag(m) = /22 (1 — 5) m? (‘u?)
If one introduces € = 4 — n and expands around n = 4

€ 2
(-1
2 € ! ¢

[0}

)
—1+-1
—|—2na

2

2
Ag (m) = m? (—€+’y—l—ln7r—1—|—lnzl2)+(’)(€)
1 2
—=—-——~vy—In7
E ¢
then
Ay (m) = m? 11+mm2+0@)
m)=m’|——= — .
0 = 2

Tensor one-point integrals

. 2 4 4,9
. AW(m) - n/dnqq2+m2—ie

Ay (m) = Az (m)d,,

1 1
Ay (m) = ~ m?*Ag (m) + ém4

Rank four tensor integral may be reduced in a similar way
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Two-point integrals, B-functions

mi

p;Qi
ma

Scalar two-point integral. Is met in the calculation of self-energy dia-

grams containing two propagators dy and d;
ir® By (p*yma,my) = p* ™" [ dq——-
2 2 2 2 .
dy = q° + m7 — ie, di = (q+p)” +mj;— ie
We will use the general expression for propagators

di=(q+pi+...+p)° +ml, —ie

For arbitrary internal masses the B function is

1 mimy  m: —m3 m?

By (p*; =-—-R-1 I 2
where A2 = X (—p?,m?, m3), MNz,y,2) = 2° +y* + 2% — 20y —
2rxz — 2yz and

R _% mﬁ—ie%—m%#—m%—/\
yo 2m1m2
Particular cases:
1) if mi1="mMo—=—1m
1 m? B+1 4m?
2. _ = B P 2 _
Bo(p,m,m>—€_+2 ln,u2 ﬁlnﬂ_l, [3—1+p2_i6

2) if one of the internal masses is zero
1 2 2 2 _ .
B0<p2;0,m>:_+2—lan—(1+Tn2)ln(1—|—p ZG)
€ K p
3) if both internal lines are massless

p? — i€
12

a{ﬁmﬁ):é+2—m

04



By function develops imaginary part above the physical threshold,
s = —p*> > (my +my)’

ImBO (pQ7 my, m2> _ Z7T\/>\ (87 m%7 m%)

6 (s — (mq + mg)Q)

S
Tensor two-point integrals.

Reduction to linear combinations of scalar functions

ir’ By, (p*;m1,ma) = p* " | d'g-2 — ix’B, (p% m1,m2) py

dod;
Using the relation ¢* = dy — m?
1
q-p:§(d1—d0+f1b), fi = —p*+mi —m3
we derive the identity
1
p* By (p2; mi, mz) =3 [Ao (m1) — Ag (m2) + f{ By (p2; mi, m2)]

The function By obeys the symmetry
By (p*;my, my) = =By (p*yma, ma) — By (p*; ma, ma)
The rank two tensor integral can be reduced as follows:
im’ By, (p%m1,ma) = p' ™" | d”é]%
= ir” | By (p% ma, ma) pupy + Baz (0% ma,ma) 6|
The last relation can be multiplied by ¢, and by p, to give
p*Bar (p%;ma, my) + nBas (p*;my,ma) = Ag (ma) — miBy (p*;my,ms)
p*Bar (p%yma, ms) + Bay (p%ma,my) = % (Ao (ma) + 1By (p*;ma, my)|

In order to solve this system of equations we have to compute the
singular parts of the scalar one and two point functions in terms of the

quantity —. We will need a function x
g

x(z) = —p’z® + (p2 +m5 — m%) T +mi — ie
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A simple calculation shows that

By (p2;m1,m2) = é_— /01 dr In (%) Si—nﬁgé

L

) - L 4[5 5

By (pQ;ml,mQ> _ éé B /01 dra?In (%) sing %é

Bz (pQ; m1,m2) — _% (%_ + 1) /01 drx + %/01 dzyIn (%)
sing _i (m%+m§+ép2)1_

By using these relations we arrive at a system of equations (*) with

KQ
n Bao (pQ; my, m2> = 4 B9y (P2; my, mz) + o
K? = p2+3(m%+m§>
Introduce the matrix
2
_ (P 4
A= (p2 1 )
and the vector b with components
KQ
by = Ay (m2) — m%Bo (p2; my, mz) — ?
1 b 2.
by = 3 Ay (m2) + fIBi (p% m1,ms)|

The By; (p?; m1, m2) functions can therefore be obtained by inversion

By, <p2;m1,m2) = [Xa;;' by
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List of the final results

1
2, _ 2 9 2,
Bl (p ymy, m2> — 2]?2 [AO (ml) _ AO (mQ) + (Am —p ) BO (p yma, m2>]
3 (m? +mj) + p*
2, _ 1 2
B (p ,ml,m2> = 13
Am? — p? Am? — 2p?
3 Ag (1) — 3 Ao (m2)
A(=p?,mi,m3) —3p°mi , 5
+ 3p4 BO (p y M, m2>
3 (m? + m3) + p?
2, _ 1 2
Bao (p M1, m2> = - 13
Am? — p? Am? + p?
— A A
1277 o (m1) + 1277 0 (m2)
A (_p27m%7m%) 2.
Am? = m? —m?

Reduction for p? =0
The reduction algorithm fails at p?> = 0. In this case, the explicit
expressions should be derived from the defining integral representation.

Ap (ma) — A (m1)

By (0: =
0( 7m17m2) m%_m%
By (0;my,ma) = —530 (0; M1, ma) + 5 <m1 - m2) By (0;m1, mo)
0By (pQ; my, mz)
BOP (07 may, m2) - 8p2 ‘pQZO
1 1 mims 3 mi + m;
B O - _ 2 2 (_ . 1 _)
22 (0,1, m2) 4 <m1 * m2> g H 2 2 8 (m3 — m3)
2
X In ﬂ;
ma
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Derivatives of B-functions

In actual calcuation one needs also derivatives of B-functions. They
appear in renormalization factors associated with external lines

0Bjo;1,21) _ _/1 dx{$;—$2§553} (1-2)
8p2 0 X
aBQQ 11 1 1 X
8}92 — —Eg_ + 5/0 dZEZE (1 — CE) 1I1 <?>

For the QED corrections, the derivatives are infrared divergent and
must be regulated

By (p2;m,0> = 71-”/2—21'*(2_%) /01 dx <X2>”/22

v
x(z) = (1-2)(p’z+m’)
With n = 4 + ¢/ we derive

N (i &\ o w(l—a) (x(@)
8—]9230<p’m’0> = —n° /7T 1—5 /0 dx (@) "

9 , 12 e\ 1 (m2\ 1 1
3—29230<p’m’0)‘p2=—m2 B ey e u (9_1+6’)
Expanding the various terms in ¢’ we derive

0 9 1 (1 m?
a—pQBo (p*;m,0) L,Q:_ma = Tom? (é —2+n ’uz)
where
1 2 2 1
—=—+4+~v+hr=——+y+hr=—

g & n—4 g
Similarly one obtains the derivative of B;
/

9 By (pQ; m, 0) ‘pz_ ) = n¢/2T (1 — 8) (m2)_1+8//2 (MQ) o

Op? =—m 2
" ( 1 2 N 1 )
g 1+ 24€
0 9 1 1 m?2
a—pQ Bl (p , M, O) ‘p2:—m2 = —2m2 (é — 3 + 1I1 ILLQ)
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Three-point integrals, C-functions

The scalar three-point functions are associated with vertex corrections,

they are much more involved than the previous ones.
Basic definition and symmetry properties

1

-2 2 .2 2 4—n n
1= Co (p7, p5, Q7 my, mo, m3) = d"q
0(1 2 1 2 3) lu’ / dodldQ

d; in this case are

d() = (]2—*—77?3—7:6,

di = (q+p1)° +mi—ic
dy = (q+ Q)" +mj —ie
where Q = p; + p2 and Q* = (p1 + p2)2 is one of the Mandelstam
variables, Q% = —s., t or u, for an arbitrary 2 — 2 amplitude. In terms
of a particular choice of Feynman parameters C becomes
Co (Pip%, QQ;ml,mg,mg) =
1 ~1
:/0 dr /Ox dy(ax2+by2+cxy+dx+ey+f)

a = _pga b:_p%
cC = 1+p2 Q2 d:p%+m%_m§
e = —py+Q° +mj —ms, f=m3;—ie

The scalar Cy function is invariant under simultaneous cyclic permu-
tations in the two sets of arguments: {p?p3Q?} and {mimams}.
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Some particular cases of Ciy-functions

There is one generic three-point scalar integral which occurs in the
calculation of two fermion production when all fermionic masses, but
top-quark mass, are neglected. It corresponds to the following choice:

Pia=0, (p1 +p)°=Q% mi=M, my=M, my=Ms.
Then the coefficients in the quadratic form become

a = 0, b = 0, c = —Q?

d= Mj—M, e= Q*+M:—M} = Mj—ie
and the result for C

Co (O,O,QQ;Mth,Ms) /0 dﬂ?/o Xz, 9)

where the function y is a quadratic form in the z and y,
X(2,y) = Q%y (1 — z) + M{y + M (z — y) + M3 (1 — z)
In this particular case we get
1 3 5 . o — 1 . X
Co=— —1 w’{Ll( )—Ll( )
’ Q2i=1( ) “\ag — 2 *\zg —

with four different roots

L MR- oM
LR R V- 2y v .
o QP MP— M F N (-Q ME, M3)

And dilogarithm function

ng . /0 1 — :Uy)

All masses squared are understood with equal infinitesimal imaginary
parts: M? — M? — ie, necessary to properly define the analytic con-
tinuation at Q% — —s.
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The special cases which are met in realistic calculation:

1 —1
(0,0, M0, M) = gyl n "

1 +1 4M?
Co (0,0,Q% My, 0,My) = 75w’ gg 70 o=l

CO <O7O7Q2;M17M270> — CO (O7O7Q2;OaM27M1)

Q* | M3
C?@OQZOM'Q::i;U(D—U -9
0\Ys Y y Uy VL2, Q2 _ 2 2 M22
One more interesting case
1 1 1
Co (—mQ, —m?, Q% O,m,O) = — [2Lig (—) — 2Ly (—)
m? (y1 — y2) Y1 Y2

+Lis (1) — Liz (112)),

1+ 1+4£;2)

The scalar integral with all internal masses set to zero
1
Q*(a+ —a-)
+2Li (a+) — 2Liy (a_) |,

2

- m

1—a+

In (ara_)In

Co (p1, 13, Q%0,0,0) =

1l—a_

Q%+ p} — p} £ A (Q% p?, p)
_ e
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Infrared divergent Cj function

f
p? = —m? p3 = —m? and my = X with ) small with respect to
all other quantities. Although by now the infrared singularities are
treated within the dimensional regularization approach, this example
is a useful bridge with the mass-regularization method.

Co (—mQ, —mQ,QQ;m,)\,m> = /01 dy /01 dx

T

x(z,y)
with the integrand

X(@,y) = 2’x(y) + X (1 —z) — ie
Xy) = m*(1—y)+m’y+Qy(1—y)
Using

! T _ X() A
b T ), ( A )+O( X(y))

one obtains the following decomposition

Co, = Filn <§) +%F2

1 2 | B +1
= n
X (y) Q2ﬁm Bm —1
1 2
XYW _ (Q : Ze)
x(y)  w p
1 ﬂm+1 mQﬂz . ﬂm"‘_l . ﬁm_l
1 1 T — 2L 2L
+Q25m[nﬁm_1 . Q2 12( Zﬁm >+ 12( Zﬁm )
The bridge to dimensional regularization

In (%)2 ~ é

F1 = /01 dy
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General case of the Cy-function

The result is obtained from the defining equation (**) as follows: first
we do the shift of integration variable y — y 4+ ax, where « is one of
the two roots of

—pia’ = 2p; - paar — py = 0

e.g.

p1-p2+ VA3
a = —
P1

where Ag = (p1 - po)” — p2p? is the corresponding Gram determinant.
After this trick, the denominator becomes linear in x and with one
trick more, namely reordering of integration,

1 (1—a)x l—« 1 -« 1
/0 dx /_am dy =), ~dz /y/(l—a) dx —/0 dy /_y/a dx

it may be readily integrated over z. In evaluating this scalar function
we define the auxiliary quantities:

—d —
N = 2\/A3, ’I“():Tea
To To

yO:_Ea ylzl_aa

Yo =170+«

and introduce three different pinches of the basic three-point integral:

PO (y) = —p3y’ + (p5 +m5 — m3) y +mj — ie
PO (y) = —Q%* + (Q”+m] —m3)y +mj — ic
PO (y) = —ply® + (pl +mi —m3)y + mj — ie

After some tediuos but strightforward algebra, we obtain in terms of
the pinches the one fold integral representation

1
Yy—UYi
Eventually — 12 dilogarithms + Veltman’s n-functions

1 | |
Co (P}, p3, Q% M1, ma, m3) = — éﬂ [ dy In PY (y) —In P (y,)
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Reduction of vector three-point integral
The rank one tensor

iWZCM (p%p%a Q27 mi, ma, m3) — M4—n/ dnq

and its decomposition:

Qu
dodids

im? [CH (p%,p%, Q% my, my, m3> iy + Cho (pip; Q% my, ma, m3) p2u]

The reduction is based on the relations

p1'q:%(d1—do+ff)a pz-q:%(dg—d1+f§)
fi = —pi+mi—mi,  f5=-Q+pi+mj—m;
Pinches are needed:
C’,E,O) = B (1,2) = By (p%; ma, m3)
C) = Bi(0,2) = By (Q% my, ms)
C’,EQ) = B (0,1) = By (p%; m, m2>

where k runs over all possible indices of the By, functions, i.e. 0,1, 21, 22.

For instance

. . |
i’ By (i,§) =" [ d Tig

d;:di, d;-:dj, for 1 =0

dy = +m5,  dy=(q+ps)’ +mj
As we did for the two-point integrals a matrix is introduced,
Xs3ij =Di*Pj

which satisfies det X5 = —Ag3, and also the vector Rg)

1 ( Gy — Gy + fiCo )

R =5 | oy
2\ Gy =Gy’ + f5Cy

With their help we finally derive
Chi (p%,p%,Q2;m1,m2,m3) = (Xs_l)ij R%)j
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Second rank tensor reduction

The rank two tensor integral

Z'7T2C/w = lu4_n/ dnq Dudv

and its decomposition
’1:71'2 {021291“]911/ + 022]92“]921/ + 023 {p1p2},ul/ —+ 0245MV

where the symmetrized combination is introduced

{p1p2}w/ = P1uP2v + PivP2u

Multiply both equations above by 9, by p1, or by pa,

2

ut n/ d"q dod1d2 = in’ (Cmp% + Coaps + 2Co3py - po + n024) (*)
4—n n 4 P19y . 9 2
v / d qm = T [(Cmpl + Cosp1 - p2 + 024> Py

+ (022291 - p2 + 02329%) p2u]

ut /d" 205123: = 757T2[(021p1 -pz—l—ngpg) Pip

+ (022}?% + Cazpr - p2 + C24) p2ﬂ]
Then

4—n m q ' plqu 1 4—n n ( Q,u q pl/L Q,U, )
i [ gt P _ d _ 4 g

7
= §7T2 lC’l(l)QN — Cfo)pm + C(go)plu + /i (Cllplu + Cl2p2u)]

and

) : 1, q q

o f gl L f g (s )

K / qdod1d2 2 I / ! dodi  dody Jrf?ﬁl0d1dQ
1

— §7r2 [01(2)191# — C’fl)QM + f3 (Cuipry + 012192#)]
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The solution to the reduction consists in defining two vectors
R® — 1 OV + O + fiCn — 20y
P2 01(2) - 01(1) + f5Cn
and

= (e )
3 = =
2 —01(1) + f5C12 — 20y

and again a simple inversion:

(021):)(3135?, and (023):X31R§22>.
Co3

Note, that in the derivation there are more equations than unknowns,
this provides an excellent checks on the internal consistency of the
scheme.

For deriving Cy4 we must evaluate its singular part

from which we obtain

nCo = 4+ (n — 4)] [—— +(9(1)]:—1+4024+C’)(n—4)

2

By inserting the previous results in the equation (*) we arrive at

1 m?
Coy=~——Co+

1
179 1 (Co(o) — f1Cn — f20012)

So, all Cj; are determined.

Third rank tensor is also needed and its reduction may be developped.
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Four-point integrals, D-functions

mq

mo my

Po—" "ms T DP3

The four-point functions are again much more complicated than the
previous ones; only some particular cases will be considered.
The scalar four-point integral, Dy-function

im* Dy (p%, 3. 03, P5, (P14 p2)°, (p2 + p3)° ;ma, ma, 3, m4>
1

KL s
the in this case are
dy = ¢* +m? — ie, dy = (g +p1)° +m3 —ie
dy = (q+p1+p) +mj—ie, dy=(q+pi+ps+ps) +mf—ic
with all four-momenta flowing inwards as shown in Fig, so that
p1 + p2 + p3 + ps = 0. In terms of Feynman variables z, y and z

1 x
D(]:/O dx/o dy/oydz
(ax® 4+ by® + g2° + coy + hxz + jyz +de +ey + kz + f)

with
a = —p33=—p3, b = —ply=—pj
g = —po=—pi, c = —pi3+pih+ pis
h = —pis—Pla+ P52 +Pis,  J = —Di+ Do+ Pia
d = m3—mj+ p3s , e = mj—mj+ pf; — P
ko= mi—m3+pg—piz, f = mi—ie

and p;; = (pi — p;)°
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Reduction of tensor four-point integrals

| _ {94 4.9 490905 44909095}
7J7T2{D,u; D/u/;D,uua;D,uuaﬂ} — ,u4 n/ dnq PE d:dld;xdg“ el

The tensor functions D;, with £ = 11,12,13,21, ...

D, = Dupi,+ Diapay, + Disps,
D, = Daupiuprv + Daopaupa, + Dazps,pan
+Dou{p1p2},, + Das {pps},, + Das {p2ps},, + Derdpw
Do = D3ip1upivpia + D3ap2upaspra + D33psupaupsa

+Ds34{p2p1P1} 10 + D35 {P3P101} 0 + Do {P102D2} 106
+D37{p1P3p3} 10 + Das {P3p2p2} 0 + Dao {P2P3P3} 06
+D310{P1p2p3} 6 + Da11{p10},,, + Dar2 {p20},,,
+Ds13{p36} 4

for rank-3 tensor one needs an additional symmetrized structure

{pkl},ul/a - p,u {kl}ya + k/i {pl}ya + l,u {pk}ya

The reduction is performed by making use of the following identities:

1
pi-q = §<di_di—1+fzd)
fil =mi—my—pi,  fy=ms—mg+pi—Q°

f§ = mg—mi—pi+Q’

and the matrix Xy, given by X4;; = p; - p;. The corresponding Gram
determinant will be det X, = —A,. The solution for D;; is obtained

by using the inverse matrix X! and R\b,

Dy " a1 D(();) - D(()?) + fi Dy
Dy | = X, 'Rigs , Ryg3 = 5 D(() ) — D(() )+ fiD,
D DY — DY) + fiD,
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where the pinches
D(()O) = (o (p%,pg,PQ;mQ,m3,m4)
Dy = Co (p3, p}, Q% ma, ma, i)
Dy = Co(p,p}, P%yma, my, my)
Dy = Co(p,p3, Q% my, ma, ms)

For the Dy; form factors the vectors RZ(Q) are

1 Dﬁ) + DSO) + fiDyy — 2Do7
R 1 Q) _ i),
145 = 5 Dy — Dyy + f3Du
Dﬁ) — Dg) + fglen
(DW= DY+ fiDy,
R4(122)6 =5 Dg) — Dﬁ) + fID1s — 2Dy
DY) — D) + f§Dus
[ D DY+ Dy
Ry =5 | D — DY + Dy
—Dg) + fiD13 — 2Dy
with more pinches
DY = Cu (3, p3, P*;ma, ms, my)
Dgll) — _CO (p§7p4217 Q27 ms, My, ml) - 012 (p§7p4217 Q27 ms, my, ml)
D§21) — _CO (pi,p%, P27 Ty, M, m2> - Cll (p?bp%a P27 my, My, m2>
+Cis (p, P, P ma, moy, mo)
Dﬁ) = Cn (p%apgaQ2;m17m27m3)
Dgg) — 012 (pg7p§7p2;m27m37m4)
D§12) — C’11 (p§7pz217 Q27 ms, my, ml) - 012 (p§7pz217 Q27 msz, my, ml)
DYy = -G (p1, p1, P% ma,ma,my) — Cy (p3, p, P%ma, my, my)
Dg) = Ch (p%,pg,QQ;ml,mg,m:),)
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In above equations, Q2 = (p1 + ps)°, and P2 = (py + p3)°,

for direct boxes, while

P? = (py+ p4)*, and p3 <+ p?,

for the crossed ones.

We present the solution for the direct boxes only. The solution for
the crossed boxes is given by the interchange p3 <+ p3. The Dy form
factor is immediately given in terms of lower rank integrals

1
Dy; = —miDy +§ Déo) — fiDy — fiD1y — fiDy3

The other D, form factors

Dy | = X;'RY)

171

with {ijl} = {145}, {426} and {563}.

Minimal SM boxes for the e™e~ annihilation into fermion pairs can
be direct or crossed. For W W internal lines there is a peculiar aspect
due to charge conservation:

direct box only for eTe” — dd

crossed box only  for eTe” — um

The box diagrams:

W W -boxes
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Some particular cases of Dy-functions

Case 1).
The most general expression one encounters in considering ZZ and
WW boxes

p; =0, (p1 +p2)° = @, (p2 + p3)° = P?
mlel, mQZO, ?7’L3:M1, m4:M2

With an appropriate choice of Feynman parameters it may be presented
and calculated as follows:

1 1 1
Dy (0,0,0,0,Q% P* My, 0, My, My) = [/ dz [ ydy [, da
1
X
[Mty + M22(1 —y) + P21 = y)(1 - 2) + Q22yz(l - )]’

1 . T T 1
S5 (=)t Lm( Y )—Liz(x )
i — T Tj— T

T QAP+ M)WV S S
1 4M2 _ Ty
£U1,2—2(1¢ 1+ QQ) 1151,2:?(14:\/674)

with the six roots
M? P*+ Mj;

T M- M7 TP M —

and
AMEP? (P? + M2 — M})
Q?(P? + M22)2
For My = 0 (in practical applications m; = O) it simpliﬁes to

4:

Dy (0,0,0,0,Q%, P% M;,0, My, 0) =

QQP?” z] 1 :E,- — IC]
with the other roots

.y 0) 0 .  4M7(P?— M)
.Tl’g—?(lq: d4>, d4 =1+ Q2P2
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Case 2). One encounters this case when considering Z A and AA boxes

where we introduce three auxiliary integrals

. 927 } _ 4—n n 2Q(Q+Q)

(X J'y'y <Q27 P27 Me, mf) - H / d qd(] (O) dl (me) d2 (0) d3 (mf)

. 27 2 p2. — A n 2@

(2 nyZ (Q 7P ; MMle, mf) - H / d qd() (0) dl (me) d2 (MZ) d3 (mf)
2Q - (¢ + Q)

i7T2j 27 P2; Me, M — 4—n dn
Zy (Q f) H / qd() (MZ) dy (me> dy (O) ds (mf)

which are simple both to calculate and to reduce to scalar functions Dy

DO (-TI’L?, _m27 _m?% _m?% Q27 P27 07 Me, 07 mf)
1 _
— @[_J’w (QQ, PQ;me,mf)
+C’0( mf,P2 me, 0, mf> —I—C'O( mf, —m?, P* ;my, 0, me)]

DO <_ 27 _mza _mfa _mfa Q27 P2707m67Mz7mf>

1 _
— Q2 4 M2 [_J’yZ <Q27 P2;me7mf)
—Cy ( —mf, P%me, M, mf) + Cy (—m?, —m2, P*;my, 0, me)]
Dy (— —m?, mf,—mf,Q2 P? M, me,O,mf)
1
- W[‘]Zv (@2, P? me, my)
Z
+C) (—mZ, —m?, PQ;me,O,mf> Co( mf, —m?, P% mf,MZ,me)]
The answers for the auxiliary integrals in terms of one fold integrals
- . 1 1 X (P2; Me, T )
Iy <Q2’P27me,mf> = /0 d;UX (P2 o, m)) In o f
2 2
j’)’Z (Q27P2;m67mf> — _jZ’Y (Q27P2;meymf) = IHJ\%W;QQ/; dZU)l(
7

Here x (P* me,ms) = P?z (1 — x) +m? (1 — ) + m}z is the usual
quadratic form.
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Special PV functions: a,b, 9, qU)
Passarino-Veltman (PV) functions, A, B, C, D, are sufficient to cal-
culate one-loop corrections in { = 1 and U-gauges. In the R¢-gauge
additional complications arise. Consider diagrams with an internal
photonic lines with photon propagators which contain an additional
term (fi — 1) q.9»/q°. This leads to a special class of two- (three-,
four-) point functions.

W

%
Y

The scalar by-function

ir’ by (p*ym) = '™ [ d'q

1
(62 ((g+p)* +m2)
This is badly divergent object in the infrared regime.

n=4+¢, g >0
With x =1+ (1 — z)p*/m?

' 2\ €'/2 —1+€/2
2. &2 el [m 1 _1tep (I — @)X
bo(p,m>—7r/f’1—§ ? /Oda:a: / -
~ 7°/2 e'\ (m? o 1 —1+€'/2
1l—=x g’
h(z) = mix ( — In X)

By adding and subtracting /(0) and by noticing that =1 [h(z) — h(0)]
is finite for &’ — 0 we obtam

1 1 m? m? p?
2. _

p2 + m2
By analytical continuation this integral is now defined in the whole

n-plane and it shows an infrared pole at n = 4.
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Vector integral

.9 2. — i " s
i by (p ,m) P = 1" [ d q(q2)2 ((q+P)2+m2>

n/2—2 1 —
e n/2 _ Q 1 Xz ( CU)
= —imp, I (3 2) /0 dx (m2x)3_n/2
Thus this function is free of singularities
2\ 1 T 1 m? p?
We have an alternative way of evaluating by (p* m).
With d = (¢ + p)? + m?, we derive
, 1 1 1 p*+ m2]
2 2 2 n
imepThy (pTm) = < dq[ — _
whm) = o/ T ap ~ i @pa
1
p*bi (p%m) = S lao— Bo (p%0,m) — (p* +m?) bo (p*m)]
In the previous derivation we have introduced a new integral,
1
. 2 n
m ag = | d"q
/ (%)

which deserves a careful examination. Since one has
1 m2 m2 2
By (pQ;O,m) =—-+2-In— — (1+2) In (1—1—])2)
£ 1 D m
from above equations which are valid for any n, we obtain the proper
definition of this integral

I 1
a=-+-=0
E £

In this way we derive a typical relation between BP and PV function

PP (5% m) = — 5 [Bo (6% 0,m) + (¢ + m?) by (5% m)
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The rank two tensor integral

q,49v
(@2 ((g+p)° +m2)

i7T2 (b21p'up,, + bgz5uy> = ,u4_n / d"q

A direct calculation shows that

ba2 <p2; m) — %ﬂ-n/?—Qluél—nF <2 . g) /01 dr 1 <1 . $)n/2_2 (mQ +p2x)n/2—2
This means
n bay (pQ; m) = 4 by (pQ; m) — %

By application of the usual method one gets the system
p’ba1 (p%;m) + nbyy (p*;m) = By (p%0,m),
pon (p7im) + b (p75m) = [By(p720.m) + (07 + ) by (1% m)
and its solution
b (m) = 5 Bo (50.m) + B (0%0,m) + (0 ) b (%) 1
bor (o7sm) = —4 b (osm) + By (5750, m) +

After the identification 1/é = —1/& the following identities hold:

(0 +m?) by (pym) = 24y (m) +2p* — (0 — m?) By (90, m)

<p2 + m2> by (pZ; m) = —1— ;2 [Ao (m) +m?* By (pZ; 0, m)]
which give relations between BP and PV functions

by (p*;m) = %Bo (p%0,m)

TSI
2 ! 1 2
) — (L
9 1 9 2 !
-5 (31 (p O,m) ~ 2 [Ao (m) +m”By (p O,m)]) * Q}
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One more BP-series
The scalar function by

2-71_2[;0 (Q2> _ M4—n / dnq

1
7
()" (4 +Q)°)
With n = 4 + ¢, a straightforward calculation leads to

/ 5’/2
80 <Q2> — LWSI/QF (2 _ 5) 622) /01 dr [33 (1 . Ji)]_1+8l/2

(Q?) 2) \p?
/ 2\ € /2 / /
— 22776’/% 9_ % @ B 6_71 £
(Q?) 2 )\ pu? 2 2
2 1 m? 2 1
Vector and tensor integrals
2-7_‘_2[;1 <Q2) Q,u _ #4—71 / dnq 4y 5
(@) ((a+Q))
4,9

i’ [621 (QQ) QuQy + by <Q2> 5/,w] = pt" / d"q

By a straightforward calculation one obtains

b (@) = — o (@)

1;21 <Q2> — i [bo (QQ' 0) - i]
Q2 7 Q2

e (@) = 565

Actually only infrared finite objects will appear in the calculation, like
for instance

d" QM(Q+Q)V 5 = 1 5111/_#2
J sy (g+Q7) 20" (@)

The full collection of scalar, vectors and tensors is, nevertheless, needed

Quly

if one wants to develop an automatic computer program for generation
and calculation of one-loop diagrams.
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cz(-j )_functions

In considering arbitrary four fermion processes one encounters addi-
tional structures. An example is given by four classes of special func-
tions, to be termed C@(j ) functions, 5 = 0,1,2,02. The function with
j = 02 is a pinch of the yv-box diagram. They are defined by the
following equations

: - 1, 4y, quqv
in?cl) oy (103, Q% 0,ma,m3) = p* ”/d”q{ 0y 090}

{L,p,pv} d2d,d,
.2 (1) 2 2 2. . 4-n n {Lquaqu%}
20 C{l,,u,/u/} (p17p27 Q yma, 07 m3) = M / d q dod%dg

. 2 (2) 2 2 2. ., 4-n n {Lquvquqv}

(4 C{l,,u,/u/} (p17p27Q 7m17m270> = M / d q dodld%
.2 (02) 2 2 N2, _ ., 4-n n {LqMaquy}
(2 C{l,u,w/} <p17p27 Q ;07m270) = H / d q d%dld%

dl(j )_functions

Finally there will be special functions associated with four point in-

tegrals. The class of the dgj )_functions is reacher than the one of the
)

which appear in the actual consideration of four-fermion processes.
This is why only three classes of dl(-j )_functions with 7 =0,2,02 are

cz(-j -functions. As usual, we limit ourself in the study of those functions

considered:

iy (P03 93, P, Q7 P20, ma, my,my) = p*™" [ d'g {23%1,d(]2uci,y}

iy (P03 93, P, Q7 PPymaymo, 0,my) = ™" [ d'g {1620(];1’;5;];}
iy (P13 23 P2 @7 P%0,ma,0,ma) = ™" [ d'g {23%1’;%53]/}

Only reduction is needed. The scalar BP-functions do not appear in
2 — 2 on-mass-shell processes.
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Summary of Level 2

Standard Model, its Fields and Lagrangian

Different gauges: Re, =1, U
Gauge Invariance

Feynman Rules, Building of Diagrams

Dimension regularization
N-point functions

Calculation of integrals:
A, B, C, D, a, b, c, d-functions

Time to calculate diagrams

Ultraviolet and Infrared divergences

1 2
n=4—¢ — -=- —~v—Inm
€ n—4
1

2
- =+——+y+In~7
n—4

n =44+¢ =
5
1 1
—+-=0
g £
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Calculation of photonic self-energy diagram

The photon self-energy is described by a tensor, II,,,

—(p+q)\

Applying Feynman rules for vertices and propagators

Tr((ig +my) v (i + id +my) 7]
(g2 +m3) [(g+p)° +m3]

S (@ +m3 + qp) — (qupv + @Pu) — 24,4,
(g2 +mF) [(a+p)" +mi]

Using definitions of A and B functions we immediately get the answer
Ay (m7) +p*By (pmy,my)|

—2p,pyB1 (p*;myp, my)

I, = eQsz d"q

= 462Qz/ d"q

M, = in” 4’ Q2{ 8

=2 Ba (p*my, ms) 8+ Ban (%, my) pups |
= iT{'Q 4€2Qg{5,uy )

Ay (my) + p* By (p%; my, my) — 2Bas (p? my, my)|

—2p.py | B1 (pQ; mg, mf) + Ba (pQ; mp, mf)]}

It must be transverse as consequence of QED U(1) gauge invariance:
H,uy = ir’ 462@2 (p26,u1/ - p,upu) 11 (pQ)
This property will be satisfied if
Ao (mg) + p*By (p*;my, my) — 2Bas (p*; my, my)

— 2p2 [Bl (pQ; my¢, mf> + By (p2; mr, mf)]
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Four functions: Ay, By, B2, Bgs, maybe reduced to only two scalar
integrals, Ay, By. Therefore, relations are possible. Indeed, from
general result, for equal masses one has:

li@%mmﬁzz—;%@%mmﬁ
6 2 2 1 2 2
By (p*sm,m) = n%;p+3ﬁAMmHJa;?l%@%mmﬁ
2 2 2 2
Bm@%mmﬂ==—@%§£+%AMW%JL%ﬁiBNﬁm%m)

and the wanted equality is immediately verified.

Result for IT (p?):
I (pZ) = 2 [B21 <p27mfamf) + B (p27mf7mf)]

6m% +p? 2 p? — 2m? )
= % +W%Wﬂ—j?4&@mww
1/(1 2 1 1 2 1
= —= —_—ln% + -+ 1 o™ [ﬂlnﬂi—Zl
3\z ©2 9 3 p> f—1
where
2
m
B= |1+4—
p

1( 1 2 5 1 2
for p2>>m?r H(p2):— —lnmf)——i—lnp

1/(1 m2 2
o gm0 - (lwm) P

The finite difference

is renormalized photonic self-energy as will be proved later.
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Fermionic self-energy

Fermionic self-energy is a 4 X 4 matrix:

Applying Feynman rules

202 [ Yu (04 +1mp) Yy
20) = Qe/dq<q2+m§—z’e) (q+p)" — i

— 4l (—62Q3> [(2 —n) By (pQ; my, O) ip +nmysBy (pQ; my, O)]

2 .
= + finite terms —
4 —n

M| =

and
nBy=4By—2, nB;=4B;+1
the final result for fermionic self energy
S(p) = in’ QL {[2B: (p% my,0) + 1] ip — my [4By (p* my,0) — 2|}

The fermionic self-energy is well-defined on the fermion mass shell, but
not its derivative, 0% (p) / 8p2|p2:_m%, which shows a singularity due

to the zero mass of the photon. We remind

0 5 1 (1 m?
a—p2 BO (p ,m, O) ‘p2:—m2 = _2—’]’)’1,2 (é — 2 —+ 111 /ﬂ)

0 5 1 (1 m?
8—]92 Bl (p , 1, 0) ‘pzz—m? = 2—m2 (é -3 + In /LQ)
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QED vertex
The one-loop QED f f~ vertex corresponds to the diagram

pz\

q K

P1/ Q

For on mass shell fermions the most general structure compatible with
both Lorentz and gauge invariance:
o2

A, = (2r ) zzeQew 2[

Y1+ o (p1 + p2), F)

Note:

o (27r)4 iieQey, — (27r)4iz'eQ€’yu +A,, Q.=-1

e [} —the Dirac electric form factor; ultraviolet and infrared divergent;
e [ — the anomalous magnetic moment of the electron; it is finite.

For on-shell fermions: @ (ps) po = —imT (p2) ,p1u (p1) = i mu (p1),
pi=p3=-—m", Q= (pi+p2) =—2m"+2pi p;

1
A, = i(eQ)’ pt [ dg N
g / ¢ |(q+p)° +m?| (g —p2)* +m?] "
N, = —4p1 - p2yu+2 (]151’704%& - 7u7a152) Qo+ (2—n) Yo Y3495

With the standard Feynman parameterization, and notations:
ky =xps— (1 —1x)py, x (Q% x) = Q%*x (1 — z) +m?

n mn 1
Ay = i(eQ)’ T (3) [ da [ dyypu'™ [ d'g T 2ga kP

= ir% (eQ,)’ [_ (Q2 + 2m2) YuS + 2 (P1Ya Yy — VuYap2) Ve

Y716 Tag]
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For the scalar integral we use the infrared regulator &’

T 1 d"q
S = 2I'(3 dr | d
O G b Aoy v | (4% — 2yq - k.)’
/ 2 e'/2
_ /2 e 1 —1+¢ 1 X (Q 75[7)
= o7 F(l 2)/0 d:c/o dyy (2 2) 2
y-integration can be performed for any value of n
1 —k—g 1
Jy dyy Ry 0,
e /2 / 1 2 .\ /2
S:ZW,Fl—g— /1dx X (@)
: 2 ) @ |

expanding around &’ = 0, we arrive at some expression in terms of a
one-fold integral:

1 1 1 x (Q?, )
S=[ de——— |-+ Ih=—""—=
/o xx(QQ,:c) ;T 12
For the vector and tensor we use the ultraviolet regulator €.
pe 1 1 d"qqq
Vo =T@3)— /[ dx | d
( )W?/O by v ] (¢ —2yq - k)’

2 —£/2
— _5/2 E 1 1 —& 1 X (Q ) iL')
e & (1 + 2)/0 dwkx,a/o dyy (0% 2) 2
_ (P2 _pl)aﬂ.—s/QF(l +¢/2) /1 do 1 X (@% 2) _8/2
2 Il —e 0 X <Q27 LL’) .LL?
Vector is finite and we may set € =0
(p2 —p1) 1 1
V, = ——2F,, = de———
2 i 2= b "X (@ 2)
Dirac algebra for vector
P2 — P1), :
2 (]élfyofm — 'Vu’Va]é?) % = 2 KQ2 + 4m2) Yp 1M (pl — pQ)M]
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For the tensor integral we have to consider full contraction

ue 1 d"qq0q5
Yo ¥5Top = T'(3) (2 =n)Yavvss 3 Jy dz |, dyy | (@2 — 2yq - ky)"

_ /01 dl’/ol dy [(2 — g)nyuX (QQ,ZE) — (2 — 8)5%3;7#%33]

1 1 2 7))
X,/T—e/Q_F (E) yl—e 5 X (Q27 IC)
2 \2 X (@) | w
After y-integration and Dirac algebra
koY e = YuX <Q27 5'7) — 2imky,,
—£/2
e X (@* )
YoV V5lopg = (1 —&)m P°r ( ) /o dx 112
2 —e/2
—im (py — /2 WS L [x(@2)
im (py = pa), 7T (14 5) [} ooy 12

tensor reduces to the one-fold integrals

x (@Q%, )

2 2) —im (p1 — p2),, F>

1 1
’VQVM’YBTaB = Yu (5 _/0 dxIn
Now use the Gordon identity

i (p1 — pg)u Du = —2m Uy, + U0, (p1 + p2), v

All together

2 2
A,U — ( ) l ZeQe Q; [’Y,MFl + Ouv (pl +p2>ymF2]

with
F o= —(Q+2m?) [ dmx(QlW i+1n’<(iz"”)
+§_—/01 d:vlnx“iz’x) —2
1
+2(Q* +3m?) || do ozl
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All integrals in terms of PV-functions

/01 dx (Ql2 PiE +1 X(Cfi ) _ %Co (—mQ,—mQ,Q2;m,O,m>
(@ ) )
_—_/0 dwlnX—Q = By (Q ;m,m)
€ M
1
(Q2 —|—4m2> /01 d:vm = -2 [B() (QQ;m,m) — By (—mz;m,O)]

Two limiting cases:
1) s =—Q*>m?

1 1 2 L
Fi(=s;m,m) = g_lnm_Q(A-l—lnm)ln S — 1€

12 £ 12 m2
_ln2—s—ze+1 2+31n—3—z'e
m? 3 m?
2) Q* =0
1 2 2
Fi(0;m,m) = —— < — 31nﬁ+4
E € 2

The quantity of physical interest is F} subtracted at zero momentum
F" = Fy (—s;m,m) — Fy (O;m,m) =

1 2 —S— 1 —S5 — 1 —S— 1
—2(A+lnm2) (ln > 226—1)—1112 i ze+ 72+ 31In 8226—4
€ 7 m m? 3 m

The exact in all masses expression for F7:

1 1 2 1+ 32 3
2Ff“b:(A—|—lnm) (1+ /5 11177) —Qﬂlnn—Q

3 p 23
1+ 6% . 1, 1., it 1— 3
+ 3 ng(n)+§7r—iln n+lnn1n(1—n)—zln 17
where we have introduced
9
=1—-—4— =
o s’ L 1+ 3
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QED box diagrams
For the annihilation ee™ — ff there are two QED box diagrams:
the direct (a) and the crossed (b)

The lowest order (Born) amplitude squared and summed over spins

t2+u

A——2|M ’=2€'Q: Q}

The corresponding contribution from the interference of the direct box
diagram with the Born one

6
€ X
Amt - 2—71_2 QZ)Q]” 85};3 (87 ¢ ’LL)
where
box 2yt 21—
00 (s, t,u) = u"D (s, t,u) +t"D (s,t,u)

Similarly, the crossed box is obtained with the replacement ¢ <+ u and
the change of overall sign

1nt - QSQf 855,(;)( (57 u, t)

Two functions D3, (s,t, u) are needed to describe boxes

t2
t°D (s, t,u) = " [do (s,t) + co(5;0,me,0) + co (550, mp,0)]

ot t* + u?
u"Dy (s,t,u) = P [do (s,t) + co (5;0,m,0) + ¢ (5;0,my,0)]

+ (u —t) o (t;me, 0, my) + u[By (—s;0,0) — By (—t; me, my)]
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where

dy (s,t) = st Dy (— 2 —mz,—m?c,—m?c,—s, —t;O,me,O,mf)
co (8;0,me,0) = SC()( —m2 —s:0 me,O)
co (t;me,0,my) = tC’o( mf, —t;me, 0, mf)

d, may be split into an mfrared divergent ¢, plus a finite remainder:
do (s,t) =t Jyy (—s, —t;me, mys) — 20 (t; me, 0, mf)
The infrared divergences in the boxes factorize into the lowest order
u? t2 2 + u?

+ - _
?Dw (s,t,u)+ EDW (s,t,u) ‘IR = —2 2

Co (tu me, 07 mf)
The ingredients for m?, m?e < —t and m? < s:

Ty (=8, —t;me, my) = 1 In m%;n% In _St -+ %ln2 T—E + %11(12 77_1?; -+ %71'2
CO( 2, —m? —S;O,me,O) = —% (; In* TZQ + éﬂ +imin ﬂj)
Ch (—m2 —mf, —t;me, 0, mf>
b e e
S

By (—s;0,0) — By (—t; me, my) = —ln—t +am
For the total interference terms, lowest order X box diagrams we have
box 3 b X
Aln(% — Q Qf ¥ (S,t,’LL)

X 1 X X
%) (s,t,u) = ;[55,(; (s,t,u)—d];f; (s,u,t)]

s2 £ 1

rpn(g) =)+ S () et ()

Note: there are no collinear divergences and the limit of
zero fermion masses can be taken.

t*+u* (1
Re box(s,t,u):2 U (7+lni> In
t
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Massless World

Two-body phase space in n-dimensions

dn—lp dn—lq
®, = Q2m)"put "
2 ( 7T> M /(27T)n—1 2p0/(2ﬂ_>n—1 2q

All vectors are assumed to be in n-dimensions.

05(") (@—p—2q)

Since final state particles are on-shell, p? =0, ¢? = 0, one gets:
o, = 2r)" " pt " [dpsT ) [d"q 6T ()™ (Q —p —q)
_ (27T)2—n 'u4—n/dnp 5+(p2) 5+((Q . p)2)
where Q% = —M? and where 67 (p?) = 0 (pg) ¢ (p?). Further,

n n—1 2 nl 2
d'p=d"""pdpy, p =2p¢°Pi—po
1=
Now we go from n — 1 rectangular coordinates to spherical coordinates
involving | p | and n — 2 angular variables

pr = | p|cosby

py = | p|sinb; cosby
p3 = | p| sin 6 sin O, cos b5
Pno = | p|sinfsinfysinbs---sinb, 3cosb, -

Pno1 = | P |sinfsinfysinfs---sinf, 3sinb, o
with limits

0<0, <m fori=1,2,---,n—3;

)

0<0,0<2m
Calculating Jacobian,
d"p = | p"2d]| P sin™ 2 0,dh; sin™* Gydby - -
.- -sin6,_4d0, _4sin b, _3db,_3d6, -

Using

/" sin™ 8df = ﬁ? E
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one has

B, = (" [ P LA E?EZ - ig ? E?EZ - §§§
()T

< ) — 192 2 2 . -3
2T —pA) 0T (=M= +2M "= 0,db
F(Q) F( ) n <| p| pO) ( po) SN 1@Vl

—_

[\J[V)

with

[PI=pi+p2+- + Py
and simplifying we arrive at important intermediate result
P2 (1PN

o, = (2m) -
St M \ u I (571 —1

For infrared regularization n = 44¢’, and cos 6, = y, | p'|= po = M /2
a2 (MN® 1 1 £/2
o, = (27)°° ( ) 1—v?) Tdy,
e = ) e o) TaT e [i(t=v) " dy

Further, with z = 1#

L=y dy = 2% [l -2 s

, 1 1 T (1+¢€/2)
= 21+€B(1 ~',14 = ’) = 2!+
NP C(2+¢)

" sin" "4 0,d cos 0,
) 0

finally get a presentation convenient for expansions in &’
o _ (M2)8,/2 (2m) " 72T (1 + £'/2)

2 8w\ p? (1+eT(1+¢)
For fun of it, using the so-called duplication Legendre formula:

VAT (22) = 222717 (2) T (z + %)

it can be reduced further on

1 [ M2\E/2 9-2 1/2—¢ )2
b, = — | —
2 16w(u2) ['(3/2+¢€'/2)
that is not convenient for expansions, however.
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Calculation of Z decay width with QED radiative corrections

f f f 7
M = W;(c %7 + -
o
f

QED vertex
For on-shell massless fermions and on-shell vector boson:

pi=p3=0, (p2) Ppp=0, pru(p)=0, Q°=2p1-pr=—M]

1
A, = i(eQ )3 p [ dg N
8 (eQe / q*(q +p1)2 (g — p2)2 g
N,u = —4p; - P2V T 2 (]51%% — /V/L’Va]éQ) Qo + (2 — TL) YaVuV 3490453

In massless case: k, = xps — (1 —2)p1, x(Q%*z) = Q%*x (1 —z)
Au =1 (6Q6)3 [_QQS%L + 2 (1617a7u - 7#'70162) Vo + 7a7u75Ta5]

For the Scalar we now have to continue integration in n dimensions

£'/2 ' 2\€'/2
—Q’S = —27;,/ ['1-— % 222 /01 dza®/> 1 (1 — x)gl/Q_l
_ _27T8’/2F . ¢ Q_2 6’/2B (5/ 5/)
¢l 2 )\ 2 2’9
et e\ (Q? e'/2 T2 (€'/2)
_ o i) (x| &2
~0-9)0e)

Similarly for Vector (we use infrared requlator ¢’)
€ /2 o 6_’ Q—Z e'/2 2 (€'/2)
1+ ¢ ? ['(e')

2
Massless Vector is not finite and we may not set ¢ = 0.
Mass singularities, collinear divergences.

2 (P1YaYu — VuYol2) Va = 742
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Tensor

£'/2
! Q2 1 & e
Yo YuVoTos =Y (L +€)m /QF( 2) ( )y de O

I
Expansions should be performed up to &
1 72
P(l+2) = 1—vya+ @)+ 2 +0(2%), (2= -
1
a* = 14+ (na)z+ 3 (Ina)’ 22+ O <563>
Notations
1 2 _
- = 5 +v+hnrm, Yy=~v+Inw
€ £
—M? —ie M?
zy = In e =In—F —im
M M
In massless case only F} remains
o2
A,=(2 ) zzeQe nyuFl
F and its ingredients
2 2
Scalar = = + : ¥ —zv) =7 — 22 +((2)
4
Vector = — — 8+ 4z
€
1
Tensor = —— — zy
€
1 2 3
F, = —2§+g(7—zv+§> — 7% — 22+ ((2) + 32 — 8
Note: )
— F7 at zero momentum is zero, (Qf;()) = 0, for &’ > 0, infrared
regularization;

— in tensor integral we face a migration of ultraviolet pole into an
infrared pole;
— physical origin of double poles: infrared X mass.
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Fermionic self-energy in massless world

Massive expression reduces to

— 202 [ qn YVl f Vo
)= Qe/dq(cf—id (g+p)° —ie]

g'/2
ip

p*z (1 — z)
12

= g’ (—BQQZ) (2 —n) 72T <g — 2) /01 dxx

(&

/ / / 2\ €'/2
— in? Q%) 7’ (2+s’)r(—52) B(2+Z,1+Z) (22) ip

Important:
fermionic self-energy in massless world vanishes on fermionic mass-
shell, i.e. at p? = 0 (for the same reason as F; = 0)

Virtual correction in n-dimensions

1 1 —
. _ 2 ABornAlL
Virtual —73 Mv ;pins Re ( )

the factor 1/(n — 1) follows from averaging over the V' polarizations.

For a correct treatment of the factors 2 7, we have not to forget

= (27
q (27T>n q q
Further
2

AIL _ € AABoran1

1672 N
Virtual = |AB°rn|2—5V

T

~ | ABorn |2 g’

After expanding of all ingredients:

12 19
0" = 2T (Lv — E) —2L; — 2Ly +5¢(2) — °

19 19 173 M?

v+ 77— —o ith Ly =1 i
TR T gy W v E gy
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Three-body phase space in n-dimensions

dn—lp dn—lq dn_lk
(2m)" ™ 2pg (2)" " 2q0 (2)" " 2k,
x6"(Q—p—q—k)
= M2 (2r)" " @5 p 6 (p7)d"q 67 (¢7)d"k 6 (k)
x6W(Q —p—q—k)d"Ps™ (P —p— k)
xd(=P?) 6% (=P*+ (p+k)?)

do, = (27r)n,u8_2n

Kinematical cascade

< . > _P2
M

_ 1 pe
dd, = 27Td( r?)
x (2m)* "t d"q 67 (q7)d" P ot (= PP+ (Q — ¢)%) 6" (Q — P —¢q)

x (2n)*7" it dp 6t (pH)d k61 (k26 (P — p — k)

1 2
= 52 (-F)
72 (M2 4 P2\ (M2+ P2\° 1 ,
o) "¢ in® 6d cos 0
< @M s\ o )( OM p ) D(1tey/2)m Yee®
 7€'l2 (/=P2\° 1 ,
X (2m)° z sin® 6,d cos 6,
160 \ 20 ) T(1+¢/2)
Reminder
o ™2 (P
o, = (2m) P ( M) 11(%71_1)/0 sin" ™" 0,d cos 0,
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Two angular integrations should be treated differently.
First might be taken (matrix element squared is independent of it)

T (1+¢'/2)°
['2+¢)

/Owsinslﬁdcosﬁ—/ (1— ) °/2 dy = 2'*¢

1
Second, with z = %

[[sindeosty = [1 (1= y2) P dy = 24 [ (1 — 2 dz

should be kept untaken.
Substituting angular integrals,

/

1 (2%)_25/ o
5 i T (2+¢)

M2+ P? (M?+ P2\ (y/=P2)° s
z(1—2)]""dz
M? Mp 1

dd

X d (—P2)
Introducing —P? = xM?, we finally get

/

M2 (M2)5' (2m) % 7€

_ g'/2 14¢’ 1 g'/2
s = i\ 42 Tate) /0 dzzt/? (1 — ) /0 dz [z (1 — 2)]
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The radiative decay V — ffv
The radiative process V(Q) — f(p) + f(q) + (k).
The kinematics may be specified in terms of two invariants, x and y:

eM!=—-(p+k)?  (y+ DM =—(Q+Fk)

Indeed
—2p-k = zM’, —2q-k = (y—x)M;
-2Q -k = yM2, —2p-q = (1—y)M?
—2Q-q = (1—=z)M?, —2Q-p = (1-y+z)M}

The bremsstahlung amplitude
(¢ +F) P+ k)

¢(q +k)?" T(p+ k)

where e(@)) and €(k) are the V' and photon polarization vectors.

Mbrem — —4 62 a (p)

¢ —¢ v (g)

The amplitude squared can be expressed in terms of invariants z, z:

1 =z 1
— +2+z(——1)”
z1—=x x

— 1 1 *
Z|/\/l]:’rem|2 —ele {2 (— — — — 1) 4+ &

Zr X 8

Here, e* =8 4+ 4¢' and
y=01—-2x)z+z
The 3-body phase-space integral in n dimensions,
[do, = [ dz [ dz,
M2 (Mg) (2m) 7% ¢
pr) (1+)r'(1+¢)

x and z integrations are left undone, because of the explicit dependence

¢, = 9673

(1) [z (1 - 2)7"

of the integrand. One should also include an extra factor:

1 1
n—12MV

from averaging over V' boson spin.
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The complete bremsstrahlung contribution is the product of the am-
plitude squared X the phase-space factor integrated over the z, z.
All bremsstrahlung integrals can be easily performed in n dimensions
and at the very end one expands around &’ = 0.

1 1 g e’ g’ rem
/Od:L'/O dzz?/% (1 — 2)"7 [z (1 = 2)F /2 AP =
16

(S)Q — 52— 43((2)

If one include phase space and all relevant factors:

1 2 19
0" = §+§(LV—E)+2L3+27LV—5C(2)+72
19, 19 373
37V 6T 36

The complete expression is the sum of virtual and real contributions.

['QED _ Bom (1 X Q@ 6QED>

/s
with
33 173 3
6QED:5R 5V:___:_
- 36 18 4

Some conclusions:

e All the poles (infrared and mass singularities) and the logarithms
cancel in the combined expression;

e KLN theorem for inclusive setup;

e Renormalization was not needed in this example.
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Summary of Level 3

1) Standard Model, its Fields and Lagrangian

Feynman Rules — building of diagrams

2) Regularization, N-point functions

A, B, C, D-tunctions — calculation of diagrams

3) QED diagrams, building blocks:

— photonic and fermionic self energies
— vertex and boxes

4) First feeling of renormalization - subrtaction
at 0 momentum

5) Example of calculation of RC’s for the decay

V — ff in massless QED
5!

— well-known correction i
T
— first feeling of divergency cancellation

— Why renormalization? Not clear yet...
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Bosonic self-energies and transitions

u,d W A
Z, A Z A
ww‘vww = MNVOMAN + M/W%MM + ww%w
N l/ \\'//
(1) w,d (2) w- 3) H
W ¢*
+ MWW + WWW
4) ¢~ (5) w-
¢’ ¢F
(6) H (1) ¢
X~ Xt
- -

(8) et (9) X+
(10) w (11) H
(12) ¢+ (13) ¢

Figure 1: (Z, A)-boson self-energy; Z — A transition
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be the 0,, part of the sum of diagrams:

U W+ W+
«/\MA{ )\A/\M, + «MAﬂi Si/\/w\, + w%i;:émw
(1) d 2 Z (3) A

W+ ¢* ¢*

\ ) W+W
: 5) 2 6 A

(4) H
¢* ¢*
«/wvv)\/q/\/ww +  Véwve ] O/VAVY
(y H 8) ¢°
Y4 X+
W\/vyb o W\/w%w\/ww
@ X- (10) Vi
(1) w (12) z (13) A
W\M%;v%wvw + Ww%%wvw + WW%%W\M
(14) g (15) ¢t (16) ¢°

Figure 2: W-boson self-energy
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Figure 3: H-boson self-energy
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(1) d (2 4
wt ¢*
- - - + - o -
4 H (5) 4
w o
—-»—f'\d\//%—-»—— + —->-—./ \/.—-b——
(M) ¢° 8 H
Y~# XT
> .
->-@ e-»- -+ —->-—0f o> -
< -
9 Xx- (10) V7
(1) w (12) Zz

(14) H (15) ¢*
o) o
__>___\= 4/___>._ + __>___\\_.:/___>._

(17 g
——— e - @ - — -

Figure 4: ¢*-boson self-energy
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3 4
ot

(13) A
(16) ¢°
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wH ¢t ¢°

(3) o (4) w- (5)

X~ Xt

> R
TR A SR A S

< <

6) X (1) X¥

® w © z

(10) H (11) o7 (12) ¢°

PN » PN
( | [ | ( |
+ _____}.4 _____ + _____ \_. ______ —|— _____}.4 _____
!
(13) g
+ - o - ---

Figure 5: ¢%-boson self-energy
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¢0

Z,A

@

(4) H ) Z
¢" y?

,>\\ >~
- MWW ->-@ e F
~_ - ._4_.’

() H 8) X~
(10) g
AWV

B ¢ (W w-
X~ X
> .
<—" ".«—"
(6) X~ (1) X7

Figure 7: ¢° — (Z, A) transition
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(2) ¢ (3) w-
X~ X+

+ ----@ o---- + ————0':‘ .:o———-
4 X (5) X+

u,d W+
H Z, A

1) wd 2 w-
W ¢* ¢*

3) ¢ 4) w- (5) ¢~
X~ Xt
> L

+ ----6 MWW+ ----é e

<_." ..<_.

6) X~ (1) X+

Figure 9: H — (Z, A) transition
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R¢ gauge. 9, part of the W-boson self-energy:
7

S (P’) = 55— o5 D), 5,00 = W) + 0P
M? S M2 10 P
my _ M 0 e _ -
S = 15 { La (1+8c)) — 7 > + 54+ 16¢; + (1 — 40c) M?]
x By (p* M, M,)
M2 2M2 M2 p2 ,

—8s3 (App +2— 52) By (p*0, M)

M2
(1 M2\ M? M?] 1
=24 ) T 144360 Ay (M
" (Ce MQ) MQ]M? (0
[ 62 M2 M2 1
Sp 2 2
ar (1+809)p——1—18 7 +16c9] 230 (M)
M? — M? 1
+ e H+7) WAO (MH)
+12 1+2 M, 1+18+%2 2r
0 M2 69 M2 3M2

ww 12 M
[BO (p €M7 §Z ) BO ( M )

sy M? p?

+2 ( —10+8c2 — 522 M

cj p?
x |Bo (0% My, €M) — By (p*; My, M)
2 2
—I—[Sgﬂpi+1—90§+c§(2—9c§)]\]}2+c§@
x |Bo (p* M, £,M,) — By (p* M,, M)

|
M2 2 ) )
+252 (p +8— 5W) By (p*0,6M) — By (p;0, M)

p’ p’
— [(52 —1) (g; +1 —I—QCZW) +cj (62— 1) (5 +1+2M2)
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2 22 M2 2
—2cj (€267 — 1)] (pZ— 1) By (p* €M, ¢, M,)
2

s (@ s 1—0) 2 ol (14 2\ By (02 Mot
Fe @ 1-29) 20 vad] (14 ) by (e
+(§2—1)[c§§2(< 3)1424—60) (2—03)2]\;22

+c; (2 — cg) + 263]]\);2] By (p2. MO,§M>

+239( ){(g% )+2] By (p*0,¢M)

+3s5 (¢ {(1 ¢’ ) ( - ) By (p*0,£M)
(A§+4—) By (p*0 M)}

Y (sg ]‘pf ; 5cg) o A0 (€,M,) — Ay (01

4 (Ao (€M) = Ag (M)

+ [2 (€2 —1) Apf —c; (&2 -1) (]\;22 - 1)] ~ado (€M)

—c; [cé (& —1) (Apf - 1) -2(&-1) ;] 12A0 (€, M,)

G (€ -1) |(2- &) %+ 6| e (08)

—c; (&2 - 1) (A]f + 1) #AO (M)

a5t Lagenn) + 40 o) - 22 otan) - 400

+Hcp (£ — 1) +4(€2 —1) + 2455 (€ — 1)}

+2s5 (€2 — 1) [M?By (p*0, M) + Ay (M) — M?|
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U gauge.

The number of total self energies in the U-gauge is very limited. Below
the whole list is presented. The following auxiliary parameters are
used:

p=—-r . h==o, wy=-—2 Bl =(1—w)

v M2 W
w

|
ro
\
|
S
+
DO
g
>
+
S
N——— /
=
=
<
=

1 (1 IR S R
H )

1 4w2]
12w
(1 1 2) Ao (M)

M2

cW — 9cW) w +

7
(2+3c + QCW) w

QOIr—\

1
( +22+c + ¢! +wh)

3 S5 4 2 Ly 3
<1+20W+20W>w —Ecww
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2

S — 9 5o s = I g S5
z7Zz 167TQC§ ZZ(p )’ ZA 16%209 ZA(p )7 AA 1672 AA(p )

2,00 17 g
3247% = (—4+3w+3w —12)Bo<p3MW7Mw>

+1[ (1 p 2)1+10 2
— |- ———2—=—4wi| —4+ == —2w, —w
4 2 h 2 h

12 Cy c;, w o c

x By (p* M,;, M)
+c (—4 — %w + wQ) Ao (My)

3 6 M;
1 /11 Ay (M)
o 1 A
+1202 (h z + ) Mg
1 1 1 Ay (M
_ (_ — — 4+ 2) M
12¢2 \h =z Mg

w 1 4 5} 1
- _h+ 4 4 4

4 2 3
60% + 4cW + 5 (E + §Cw> w + §cww + Ecww

U 2\ 2 27U 2 U 2y 2 217U 2
ZA,4<p) T SWp nyfy(p )7 EZA(p)_CWp H (p)

vy
1 17 4 w
U (.2 2 2
) = 5 K‘“ 3T 12) o' M )
4 w? Ay (M) 4 O w’
Y/ W2 — —w — —w® — —
+( 3w+ 6) M? 37 79" T 18
20 (?) w’ : Y02 By (1
73% _ (3+w+4) By (p* My, My ) + SwiBo (% My, M)
2 5 w A0<Mw)
—’—26;1/}/(34—24—4)Bo<p7MZ7MZ>+<3_2> Mgf
3 w) A (M) 3, Ao (My)
2 4) M2 T4 M2




Fermionic components of bosonic self-energies

e (p?) = 4Zf:CfQ?fo (p% my,my)

R (p) = Ef:cfoUprBf (s my,my)

XonPY) = Tep|(vf +a}) p*By (pimy,my) — 2ajmi By (p%my, my)

s (%) = fz::dCfPZBf (p2;mf'amf>+§cfm?31 (p*smymy)

. m3 p* + 4m?
ye (%) = ?CfM—’; A (myg) — TfBO (0% my, mf)]
w

The fermionic component of the H — V transition vanishes
X [Bo <p2;mf,mf> + 2By (pQ;mf,mf)] Py
The definition of the function By
By (p2;mf/,mf) =2 [Bgl (pZ; mf/,mf) + By (pQ; mf/,mf)]

Pole and finite parts of the B;; functions

1 M?

B (pQ; mi, m2) = Cij (5 —In ,ugv) + Bj; (pZ; mi, m2)
1 1
C():l, 01:—57 02125

For equal masses m; = mg = my

2 2 2 2 1
2 F (2, _p my. My
pr (p,mf,mf)—§+ 3 lnMv2V+§

(2m} — p*) By (p*my, my)

and
1
B (pz;mf,mf) = —530 (pZmeamf)
m2 +1 m?
Bg(pQ;mf,mf> = 2—ln]w£—ﬂln§_l, B = 1+4p2f
W
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Asymptotic behavior of B functions and self-energies

Realistic situation: all fermions but top quark are massless.
More approximation:

P’ << m;

i.e. my is the largest and the only scale

mygr = My mf/:() myr = My
Bg (p2,mf17mf) — hl ,U,Q 1 — IHF the same
1. m? 1 m2 1 1 m2 3
F 2. t t "
rimem) 2oy e T e T
1. m? 1. m? 5
BF 2. , — .| t | t 2 th o
f(p;mf,mf) 5 Il,u2 3 n—,u2 13 e sam

Using this table, one derives for Z7Z and W W self-energies
fer _
EZeZ (O) == amt In —
or 3 m? 1
Zivw 0) = ~m;} (ln — )

Veltman’s p parameter (original)

1
M2

r er 3 ;
s (0) — 2 (0)] & -5

Ap =
AM?

More relevant quantity is made of complete self-energies

1
2
M2

3 m?
M2) = 5,,(M))| ~ —=—L

Ap = 7 INYE
W

b

WW(

It is the gauge invariant but ultraviolet divergent object.
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Ultraviolet behaviour of fermionic components of bosonic self-energies

(more physics and ... politics)
Consider two diagrams:

u,d f
u,d /

Common expression
Tri(ig +mp) Iy (ip +ig + my) Iy
(¢ +m%) [(g+p)" +m]]

Vector case, e.g. I't =, I's =,

Y X

Ounlq (p + @) + M3 — (qupv + @wbu) — 2044,
(@2 +m3) [(q+p)* +m3]

(Ey)w o< 4

Scalar case, 1 =1y =1
¢ —p-q—m;
(@ +m3) [(q +p)° + m3]

250(4

Leading UV divergences

5uyq2 T 2(]“(];/
2 2 2 2
(q + mf) (g +p)” + mj]

= 5Wi7rgr(1a)F (1 — E) (m2 — p2>%_1 % (n—2)—>T (2 — g

(Ev ) o< 4

Naturallness, SUSY, LHC and all that...
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Calculation of decay rates in the Born approximation

PDG convention

(2m)"
IM &

Has to be redefined in order to generalize to n dimensions

dl’ = S| M?de,

1 —
[=—— 2 dd
d 2M§8|/\/1| do,

The two-body phase space

b, = (27T)4/

Calculation of &,

d3p / d3q
2m)% 2p0 7 (27)° 2¢0

0(Q—p—q)

1 d’p oy iy 2
Py = g g, [ 11T (@4 )0@Q=p—0)
with 3% (p* +m3) = 0.(po) 6 (p* + mi3)]
1 PP
"l

[using | p'| d| P |=podpy and dQ2, — 47r]

-
20,5+ (@ -+

1 1|p

U . = 2 M /

1
b, = 8—7rﬂf (M)
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Calculation of 3° | M |* for three decays: V, Z, H.

Axial-vector case:

~ 1 Vo orn orn
SIMP = 5 (d+ ) S (o)’

M = ifa(q) v (vf +apys) v (p)
(MB)™ = i f5 (p) 7y, (v + apys) u (g)

where the coupling constant

r

€ for V' = heavy photon

=1,

~ for V=27
| 2¢9

For non-polarized fermions

Yu(@ulg) =—ig+ms,  Zv(p)v(p)=—ip—my

spins

and

4 4 2

§B2M5 (1 + 2]\7?;) for 'V = heavy photon
f | M |2: ) 142 v 2 2
I |+ a2 (14278 ) —6a2 L] for V=7

(3¢5 2|V M? M2
Scalar case:
f | M |2 _ EMBorn (MBorn)+

Born mf — Born\ T mf —
M = S ale), (M) = ) ()
and
2,21 12
o gmEM. o
sz|M| 2M2Hf(MH)
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List of answers for partial widths

_ €2M m?
r = V.3 (M) [1+2—L
V = £f) o P v)( + Mg)
F 2, 2 m% 2 m%
— Gpm2M
I'(H — _ TFTTHE 33 (ar
GF 92 M2 9 M3
here one used NG = SMI%/ , ﬁ%’ =c,, Iy = 24\/%7r
Calculation of partial widths through self-energy functions
S — - M2aB, (M2
T 2[ v f( vvmfvmfﬂ
167
2
9 2 | 2\ a2 9.
SZZ = 167‘(‘7203[_ ('Uf + le> MZBf (_MZ’ mf,mf)
—20,3&377’1?'30 (—M;; my, mf)_
2 2 2 2 .
it = g M2 (AO (my) = —"5—5 (=M, my) _
Recall

Bf (—M2; mf,mf> =2 [Bgl (—M2;mf,mf> + Bl (—M2; my, mf)]
Taking imaginary parts:

Im B, (—MQ;mf,mf> = —%ImBo (—Mz;mf,mf>
Im By (—MQ;mf,mf> = ;(1—;}%) Im B, (—MQ;mf,mf>
7

Im By (—MZ;mf,mf) = w08 (M)

Im Spp = MpI' (B = ff)
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Dispersion relation for I (p?):

6m% +p®> 2 p? — 2m>
2\ _ f f 2.
1 (p ) — 9p? T 3p2A0 (my) — 3p?2 Bo (p ML mf)
with
2 1 7 2
By (p ;mf,mf) = g_—ln—Q—l—BO (p ;mf,mf)
2 2
Fl2 o1 p'z (1l —z)+ms B+1
B, (p,mf,mf) = /0 dx In m? —Q—ﬁlnﬁ
2
B o= 144t
p? — e
The renormalized vacuum polarization (p* = —s)
1 1 m}
[1*"(s) = II(s) — I1(0) = 573 142 e B{ (—s;mg,my)

[ts imaginary part

2

1 ; 1
Im [T""(s) = —3 (1 + me) Im BY (—s;ms,my) = —3 (1 + me) uyer:
s s

Compute dispersion integral

Im TTren d m2 4m>
f/oo2d7 m <T> :__/ , A I LLT A B P I L
mHAmy (T — 5 — ie) 34ms (1 — 5 — t€) T T
1 AN sdt 4m3  2m% oo dT 4mS3
- ——|14+2-1 J1 = / 11— —1
3(+ S)Am?T(T—s—ie) _— Ame T
sdT 4mf 6+1 0o dT 4m?c 1
L2 _ = fn———2, [, —\1— = —
mf (T — 5 — i€) g1 my T T 6}

Substituting last two integrals, we see an identity
Im [0 (7

T(T — 8 — i€)

0(s) = ° [p%, dr
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Fermion self-energies in the standard model
f f /!
[ [ _ [ [ [ [ [ [

+q Lh+44 Lh+~4 L
(4) H (5) ¢ 6) ¢

f' is the weak isospin partner of the f-fermion.

Vf = 1}3) — QSng, af = ]}3)

Combinations of couplings,

_ 2 _ .2, 2 _ ’
op = vy tay, oy =v;+ay, 0}—('vf—|—af)'

_ (2) _ 2 _ 2 L ’
6 = vp—ap, 0 =vi-aj, &= (v —ay)
Each self energy diagram containing a B-line, Y5 (p),
2

T (f) = @m)'isd Ay = pata
There are six Ag-functions in R¢ gauge, and only four in the U gauge.
Ai — s Q?{zjﬁ[QBl (pz; mf,0> + 1] — me[ZBO <p2; mf,O) — 1]
— (ip + my) (fi — 1) [Bo (pQ;mf,O) + my (ip —my) by (pz;mf)]}
In the U-gauge,

1
409

+my0 [3By (p% My, my) + M2A0(mf)—2]}

2
{216 (O'f +2vfaf*y5) {p j_\zgnfBl( 2;M mf> + AY (p M,, )]

AY= -

2 2
AU —iw (14 ) {p LTf’Bl (p% M, my) + AY (% M, mf)}

with the auxiliary function

Ag (p2;M,m> = 2B, (p2;M,m) + By (pQ;M, m) +

MQAO( m)—1
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The standard model vertices: V,S — f1f,

|

4+ ey S

1) f

Figure 10: (Z, A) — ff vertices. Symbol (Z) in some graphs indicates that given diagram
contributes only to Z vertex.
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Figure 11: W — ff vertices.
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|

Figure 12: H — ff vertices.
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Example of a cluster
The non-abelian diagrams Fig. 10.(4,9-11) with virtual (W, ¢) ex-
change, V' (Q?). All the diagram 10.(9-11) contribute in our ap-

proximation (since f' =t and mp can’t be neglected).
~f f vertex

;3
V(@) = en)tigsy (H1) w ) 7L (@)

Z f f vertex

- 3
V(@) = iy (1) ) B (@)

U gauge

2\ 2 2 ) 2 4
/ ! 5 !/ !/ !/
FY (@) = [—(1—mf) (A R A

M2 M?) @ 2M?2 T T MY 2MS
m2/ m2/ Q2
f f 2 2.
e (2_2]\42) M?]M Co (0,0, Q%5 M, myr, M)
2 my (3 my\ @ Q )
S o By (Q* M, M
3 oz \2 T an?) T oM 0 (@ M, M)
i 2 2 4
B l_mf/ 2+mf/ M2 3+§mf/_ mf/
M? Q? 2M?  2M*

< [Bo (Q% M, M) — By (o,mf, M)

— Q—Q) 1A0<M) A0<mf’)

37 6M2) M2 Y
2 omp (4 mp\ @ Q@
s o2 \9 T a2 M 1sMe

This vertex, as well as the abelian diagrams Fig. 10.(3,8) with virtual
(W, ¢) exchange, are one more source of m?/ MVQV enhanced terms.
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#procedure CalcDirBoxU(iu,id,fu,fd)

#call
#call
.sort
#call
.sort
#call
#call
.sort
#call
#call
#call
.sort
#call
#call
#call
.sort
#call
#call
#call
#call
#call
.sort
#call
#call
#call
#call
#call
#call
#call
#call

direct{’iu’[’id’|’fu’|’fd’}
prediracizing{dummy}

prereduction{dummy}

reduction{dummy}
scalprod{dummy}

diracizing{dummy}
scalprod{dummy}
diraceq{’iu’|’id’ |’fu’|’fd’}

epsilon{dummy}
scalprod{dummy}
sing{dummy}

diraceq{’iu’|’id’|’fu’|’fd’}
extmomsshell{’iu’|’id’|’fu’|’fd’}
masses{dummy}

equalizing{dummy}

twohel{dummy}

scalarizingd2{dummy}
scalarizingdl{dummy}
scalarizingc2{dummy}
scalarizingcl{dummy}
scalarizingb{dummy}
extmomsshell{’iu’|’id’|’fu’|’£fd’}
extmomsshellarg{’iu’|’id’ | fu’|’fd’}
masses{dummy}

#endprocedure
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Summary of Level 4

1) Standard Model, its Fields and Lagrangian

Feynman Rules — building of diagrams

2) Regularization, N-point functions

A, B, C, D-tunctions — calculation of diagrams

3) Groups of diagrams, building blocks:
Tadpoles — made of one point functions
Self-energies — two and one point functions

p-parameter
m?-enchanced terms
problem of quadratic divergences

Vertices — 3,2,1 point functions
Boxes (direct / crossed) — 4,3,2,1 functions

4) Approaching calculation of amplitudes for
physical observables,
inevitability of renormalization.
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Dyson resummation

1 1
(27T)4z' (p? + M?)

+ —O0—0O—
+ 000~
_|_

1 1

In case of conventional QED
S, = in'e’ (p25w, — pup,,) 411 <p2>

L w1 G 1
om)ti p? om)ti p? o, €
(2m)"i p (2m) Py ()

H(pQ) = 2 [le (pZ; m, m) + By (p2; m, m)]
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Renormalization in QED
QED describes the interaction of spin—% particles with photons.
QED Lagrangian in Feynman gauge is

1 1 2
L :_ZF/WFMV_é(CA)

QED

— %@f (@ —ieQ A +my) Py
where
F,.,=0,A4, —-0A,, C'=-0,A,
and the sum runs over fermion fields, f (charge e, and mass my)

The Feynman rules of QED:

p— 1 —z']é+mf
(2m)*i p* +m} — ie

M v 1 1
(2m)* i p? + ie

>wm H — (2n)'i ieQyy,

On-shell renormalization in QED

QED Lagrangian is unambiguous at the tree level. Moving to higher
orders, we assume that it is made of bare fields and parameters labelled
with indices 0, and specify the renormalization constants for both fields
— A, and ¢ — and parameters — the mass m and the charge e

O

A = 2P A, =2
e = Zee, mO:me:m+625m+(’)<e4)
Zi = 14+€%62;+ 0 (")
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The Lagrangian can now be re-written, up to terms O (e?)

Ll = Lopp + Let

QED

with a counter-term Lagrangian
Lo = LY +0(e)
L8 =~ OZuFyFy — 074 (DA — 62,00
— (0Zym + dm) ip — i (5Ze + 072y + %(5ZA> eA, vy,

The counter-term Lagrangian generates a new set of Feynman rules

m/\/\/§%/\/\/\/ — 625ZA

R — —e? (§Zyip + 6 Zym + dm)
ot

1
M — —z'e’yue3 (5Z6 +0Zy + §5ZA) .

€

and we have to take into account contributions generated by both pieces
The photon self-energy

Sw = e’ (p2(5w, — pup,,) 411 (p2>

[1(p°) = 2|Ba (p*ym,m) + By (p*;m,m)| = —3%_+Bf5 (p;m, m)
mo - L 1. m?
0 = (1)

The p,p, part does not contribute whenever one consider S, as cou-
pled to conserved fermionic currents. Therefore

2

_ 2 _ 4. € 2
Sy =op o , [Ty = (2m) zmﬂ (p)
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The Dyson re-summed (sometimes called dressed) photon propagator

1 4, 1
Dy = g 2

(2m)*i p? € 2
1+625ZA — 4—71_21—[ (p )

Similarly, for the resummed electron propagator

1+ e*67Zy) (ip + m) + e*6m
1
(2m)*
The first two terms in the Taylor expansion of ¥ (p) around the physical
electron mass ip = —m (sometimes called subtraction point)

5 (p) = S (im) + (ip + m) Sy + O ((ip + m)°)

where the coefficient of the linear term sometimes called wave function

2 (im) + (ip + m) Sy + O ((ip + m)°)] }_1

renormalization factor

)
v )

By strightforward calculations in dimensional regularization

ip=—m

3 2
Y (im) = ire’m (— +3In ﬁ? — 4)
€ H
Yiwp = e’ {231 (—m2; m, O) +1

—4m? [Blp (—mz; m, 0) + 2 By, (—mz; m, 0)]}
1 2 2
— jrle’ (—_+ ~+ 31Hﬁ2 — 4)
E € 7
The one loop eTe™~ vertex with both fermions on mass shell In terms
of V1 (Q%* m,m), the y,-part of the one-loop e*e™ vertex becomes

— (2m)tide {1 + €’

1 1 9
5Ze + §5ZA + 5Z¢ + @Vvl (Q ; N, m)] } 7,“

The essence of the on-mass-shell (OMS) renormalization scheme is to
preserve the meaning of the original parameters of the Lagrangian.
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First fixation condition

For the dressed photonic propagator, we require that its residue should
be unchanged at the photonic mass shell, p? = 0, i.e.

2

2 6

This requirement guarantees that the wave function for external pho-
tonic lines does not change due to one loop radiative corrections and
simultaneously fixes e?6 7,

1 1 m?
67, =——|—=+In—
A 127r2( €+n,u2)

Second fixation condition

For the dressed electron propagator we require residue =1 at the elec-
tron mass shell, ip = —m, i.e.

1
©2n)* i (ip +m)

This requirement preserves the external line electron wave function

from being renormalized by one loop radiative corrections and simul-
taneosly fixes two more counter-terms

Y (1 Y
e’om = (ZT) €07y, = W
(2m)" (2m)" 4
or
m (3 m? 1 12 m?
m=——|—+3In——4 0/py=—=|——+=-+3In— —14
" 167r2( ER ) v 167r2( ER R )

Third fixation condition
For the one-loop corrected vertex we require it to be

— (2n) idey,
at Q? = 0, which preserves the Thomson limit of the electric charge
from being renormalized by one loop radiative corrections

1 1
0L+ 074 +07y + — : =
—1—2 At ¢+167T2V1(0,m,m) 0
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Substituting already fixed counter-term 07, and the derived expres-
sion for V7 (0;m, m), we observe famous QED Ward identity

1
02y + @Vl (0;m,m) =0

that fixes the last counter-term
1
5Ze = —§5ZA

Now all the counter-terms in the Lagrangian are fixed and one may
calculate any QED process at the one loop level.

The one loop and the counter-term contributions for any external on-
shell line compensate each other identically (this is known as the prin-
ciple of non-renormalizability for external lines).

For any 2 — 2 fermion process, at one loop level, we encounter only
two building blocks:

1) the effective (running) electric charge, e (p?), entering photonic
propagator

2 (p?) § P
ezDW _ € (p ) Qv o2 (pQ) _ 26
)

1 — 46_71-2Hren (p2>

the evolution is governed by the renormalized quantity
Hren (p2) — I <p2) — 11 (O)
2) the renormalized vertex, V" (Q?; m, m), entering the eevy vertex

3
o [V (@5 mym) + 0, (b1 + pa), V2 (@7 m,y m)]

The renormalized vertex is again the difference

Vvlren (QQ; m7m> =V (Qz; m, m) - (OJ m, m)

Ay = (2n)ti
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Integral representations, limiting cases

" (p*) = é ;(1—2)/ doln X7 0)
P

m
X(pz,x) = p’z (1 —z)+m?
For low s = —p?
ren (, 2 p’ 2
I1 (p>:15m2, for p°— 0

the well known contribution to the Uehling effect, i.e. the modification
of Coulomb’s law due to vacuum polarization.
Alternatively for large s = —p? we have

1
Hren<p2):§<ln%—i7r), for s=—p® —= o0

The V" (Q%* m,m) in an integral form

Vi (Q%m,m) = 2 (;““ 7:) {1 - M/“l dxx“;z’""”)
(@) a8
[ dein® (g;’ )
+2(Q* +3m?) | d‘”><(¢312,a;) -

there remains a pole and a scale dependent factor

1 m?
—A—i—h'l—2
e p

which has an infrared origin and which will be compensated in any re-
alistic calculation by the contribution of the real soft photons emission
and also by the box diagrams, which are ultraviolet finite by themselves.
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Non-minimal OMS renormalization scheme in the U gauge
Independent quantities of the scheme:
the electric charge, the masses of all particles and all fields

wéL _ < 1/2) W %R _ ( 1/2) W

Wou = Z1/2W Zow = 7177,

Hy = 21/2H Ay = ZI/QA A
Bosonic mass renormalization
M =27, Zy'M,, M;=2, Z;'M;, M, =2, Z; M, (x)
Fermionic mass renormalization is more involved, due to mixing

Lo~ = (0, Zmpg + 0,25 0, — bmg)

All but one renormalization constants are fixed by requiring that the
residue of all the propagators is 1. This remaining renormalization
constant is associated with the renormalization of the electric charge

_7 Z—1/2
One may use the additive renormalization of the electric charge
eg = ¢ + de’
e’

One may prove that the relevant Ward identity implies
Z. =1

Two definitions, valid to all orders in perturbation theory
The OMS weak mizing angle, 0w ( c,, = cosOy)

22 _ ar2
MZCW - MW
The OMS weak charge
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The kinetic and mass terms for bosonic fields

L = (Za= 1) (A)°
L9 = (et 2y 1) (Z) 3 (2, 1) M2(Z,)°
—%Zl/QZJ{fAWZW
LW = = (Z = 1) W = (2, = 1) MEIW,
chinH —%(ZH — 1) (9,H)? - % <ZMH - 1) M2 H?
Here

Vi = 8MV,, — GVVM
The fermionic kinetic term
) 1
Ll = _5@/)@ [(V Zr T\/ Zy — I) T+ + (V ZRT'V Zp — I) ’Y—] (2

Since \/Z; and \/Zp are understood as matrices acting in the full
fermionic-flavour space, the following equation

V7| =7,V

should be undestood as a notation. In general, these matrices are non-
diagonal and even non-hermitian, due to the mixing induced by loop
corrections. Renormalization requirement fixes the combinations,

VZ[ -1, VZi| -1

which directly enters the kinetic term.
In the one loop approximation we may consistently accept that
VZr r are hermitian matrices, then

Zin — 1= 3 ({Zeal -

and all combinations entering the interaction Lagrangian become known.
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The V(H)f f interaction parts of the Lagrangian
Ll = %le%u[Q\/Z_L P D+ (VZa| 1) +2(Z - D]pa,

_ - Z,, Z 1/2
Vo S — ‘/_Z‘ 7t B A G
= g e VM|V 2z, 7, P
, 1 Z ZW 1/2
~2Qss, |5 (V7 [+ +|VZa [ 7-) 77 7)
1 2 1 2 o 1/2]
—QQfSWCW (5“\/ ZL ‘ Y+ —+ 5“\/ ZR‘ "}/_> (Z—A) >¢ZM
WF L e \/— N 12 | d
ct 2\/§SW¢ Y Y+ L dL ( AZC> Y* + h.c
CHIT _ _ € ” 1<Z L g ) ZuZow 1/2_m .
ct QMWSW 9 my - mffy-i- ZAZM Z, f
where
2 2 2 2 2
7. = _5C_W7 2 =1——" &_WngW 5MZ
s2. w M? 2 M2 M2

with M, and M, being the physical masses of the vector bosons, C
being the CKM-mixing matrix

Full list of bosonic renormalization constants (some unnatural looking
is an artifact of the definition (*))

Dy ~ W = 5]\]\443% N 167r922]\4v2VEWW ()

Iy, — 42 = 6]\]\4422 167r2g 22M2EZZ 1)

Zaty ~ om0 = 5]\]\4%3 B 16#922]\42 P (M)
2" = S O]
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62

Za—1 = 1,510 (0)
_ 92 8222 (pQ)
ZZ -1 = 2 ‘ 2 2
16m2c;  Op? p*=—Mj
_ g 0%y ()
Ty —1 = I
167T2 8])2 p :_MW
_ g’ Oy (p?)
Zy—1 = ‘ 2 2
167'('2 apz p :_MH

Argument convention.

For every: X, I, Il ..., it p?> = —s or p* = —M?, then we will
omit the minus sign, i.e. Z s (8)... On the contrary, in the argument
list of By, Cy... functions, we will maintain explicitly the sign.
Linearization.

Due to perturbation theory, where all renormalization constants are
power series in the coupling constant e.

L = %ﬁ@w{[\@f 1

1 2 — s dc
+5 ((Zz—l)—(ZA—1)+ o c2w) 1Yy,
W
—2Q;s”, [ <‘\/ZL‘ —1) S (‘\/ZR‘ —I) oy
1 ( 1 dc 1/
4o (ZZ—l)—(ZA—l)—W)JrWZ/”sz
2 ng c%v Sy M H

T = %iww{w—z@ 1) C+C (V1)

2
+C[ (Zw —1)—§(ZA—1) 4 }¢d+h.c.
_ L v 1
Lol = ‘QMZSW‘”{(ZW )+ ms |5 =1 = 5 (g, =)
1 1(50

+ (% —1)——(2,4—1)

/b

232
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Fermionic renormalization constants

Fermionic self-energy

f
;N
B

The most general expression
S(ip) = 2m) i a1 + azvs + (a3 — aygys) ip|
In the Standard Model always as = 0
S(ip) = (2r)"i [ar + asip + asipn)

Kinetic and mass terms of the Lagrangian may be depicted as

f >< [
> >
and they contribute as

(VA = 1)+ (VAT - 1) ]
- (me B mf)

From requirement that the sum vanishes on fermion mass shell, one

derives all renormalization constants
2 2 /
‘\/ZL‘ — 1 = a3 —2m’as; + 2ma; + a4

‘\/ZR ‘2—1 = a3 — 2m’as + 2ma) — ay
Ty = -

. . / _ 2
note derivatives a; = 0a;/0p°|2— 2
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Summary of Level 4

1) Standard Model, Fields and Lagrangian
Feynman Rules — building of diagrams

2) Regularization:
N-point functions — calculation of diagrams

3) Building blocks: Self-energies, Vertices,
Boxes (direct /crossed)

4) Renormalization:
Dyson resummation
Renormalization constants
Counterterm Lagrangian
OMS scheme and fixation of renormalization
constants
Residue One requirement

5) Time to calculate amplitudes of physical
pProcesses
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The Born amplitude and diagrams for the reaction ete™ — ff

_l_
Born GQQle
‘Av = < Y @ Yy
B e’ :
Azorn _ 12 XZ(S) ’Yu(ve +ae'75> () "}/M(’Uf -+ af"y5) —  VA-basis
SWCW
orn 62 3
A = o) [0 = 2Qusi] @ [1 204,
— LQ-basis
where v+ =145 and
(5 1
Xz\S) = ]
s — M2+isT', /M,
From
9> _ Gr 2 — 6_2 2 = M_Iif
SM2 /2 W oM
one eagsily derives
< aGM?
— F
4s? c2. z
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Muon decay
Muon lifetime. The process is

p—re+V,+ Ve

If QED corrections and W-propagator effects are included (PDG)

2
i GmF(m) (Hi%mi) Ha@w)(f_ )

BT 1w \m? 502 27 "
F(r) = 1—8r+8r°—r'—12¢%Inr, a (mi)%l%

One must use the accurately measured muon lifetime or the Fermi
coupling constant, G = 1.16639(2) x 107> GeV 2.

This decay process is conventionally described with the effective four-
fermion Fermi Lagrangian

Gr— _
Lr= 7; DNV, VY Py, + hc

One calculates observable distribution, dI'(z), in kinematical variable

2F
T=— E. is the electron energy
my

If electron mass is neglected, x varies from 0 to 1. In lowest order

G%m5$ (3—295) — i_G%mz

dI’(z) = —
(@) T, 1927

9673

Real and virtual QED corrections

Bremsstrahlung in p-decay
p—>e+V,+ Vet

It is described by diagrams
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The quantity of experimental interest is the transition probability summed
over all possible photons in the final state. After lenghy calculations

GZm? dQ. «
dl'(z) = —L——1T
(#) = 96w am 27 L)

I(z) = 22°(2x —3) (L —1)

(1—a)

1
—A—l—lnm“izne—i—ln
€ M

+22 (3 -5z +22%) In(1 — x)

%x?’) (L—1)

3
5)
1227 (22 — 3) Tis () + 27 (1 - x) "= (1 - )’

L = In (x%>

Me

5
+<—§—4x+17x2—
2
3

Virtual QED corrections for p-decay

There are three diagrams contributing to the order «

o fon V4
N N N

Lowest order interaction @.vqv+u,, receives QED corrections (dressing)

o ) )
_4— (Flr}/of}/—i- + —F2 Q,u,of)/— + —F3 Qe,of)/—)
s m/L m/L

Result of calculation of diagrams:

1 . .
Fo— 2<g+lanT)(L—1)+2C(2)—2L12($)

+Inz 1 —21n(1—$)+2L]—3L+4

—
2
Fy, = 1) 1 —z+2z Inz
2

F; = — 1l—z+(2z—1) Inz]

(1—a)
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After calculation of traces

Grmy, o
9673 4w
The lowest order result is multiplied by a correction factor, F7, which
is ultraviolet but not infrared finite; the remaining two form factors, Fj

A () = (1= 5 A) 10) + 2 (Fy+ Fy)

and F3, are finite (the latter are induced form factors). This expression
is infrared divergent and must be combined with dI*(x).
Total QED corrections for p-decay

The experimentally observable quantity is the sum of the two tran-
sition probabilities for real and virtual processes.

G2m? o
I(z) = 222 |3-220+—AI
di(e) = C e [3 Tt (:c)]
1 —
Al(z) = 2 (3—22) |(L—1) (21n ‘"”+g)
Wi
+1In (1 )(1 +1 1) Inz + 2 Liy () L2 1]
n(l— n ——|—In 1 — =T — =
x T - T 9 (x 37r 5
=3Iz +—— [(5+172 - 340%) L — 22z — 3427]

By integrating dI(x) over x from 0 to 1
1 Gim, [1 L@ (25 2)}

— = — | ==
7, 19273 om \ 4

This the result derived within QED & effective 4-fermion Fermi theory.

Of course, calculation could be performed exclusively within the
Standard Model framework. This would give something like

1 m5 g4

— =1L 1+4,).
7, 19273 32M;1V( + %)

However, Fermi constant was historically defined by equation (*).

The important point is that both the EW and QED corrections are
infrared and ultraviolet finite and gauge invariant, therefore they can
be treated separately.
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EW corrections for muon decay
As a consequence

6 = 8 + 55

or
Gr 92 92
5 _ 56777, — (1 _56’(1])
V2 8M?2 ( a )] 8M? i A H
remember basic definitions of OMS scheme
2
292 ag2 2 €
MZCW - MW ’ 9 = o2
W
using them, we arrive at
2 2 T ew
= ——(1+ A Ar —5
Sww \/iGFMg (1+Ar), 4o M
or (Sirlin, 1980)
22 Ta 1
VW V2GrM2 1= Ar
the final result for Ar in one loop approximation
a 1 2 c2
AT = {82 [__ . err,F (O) + —WApF
2 044 2
47 Call Wil 3 ot
11 5 9¢?
F 9 2
+Apy, + 5 8w (1 —|—CW> + 43;" In ¢ }

where Finite parts of Ap” factors
ApF _ ApbOS’F + Apfer,F A,O Apbos v + Apfer F
= 7 o=

have fermionic and bosonic contributions
1

Apbos(fer),F _ M [EEI;);/(fer) (MI?V) . Egzs(fer),F (Mg)]
w

AphostEF ﬁ [EE;VSV(fer),F (0) — stovsv(fer),F ( M2 )}
w
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bosonic contributions explicitely

1 4 17
bos,F' Y P F({ ar2.
App>t = —(1204 ‘27— 4cW) B (-M?; M, M,)
EE
2 2,
+_ : +1 ! I
I — — — —Wh| W 1IN W
A1 —wy) 4 12 TR
(o, 17 3, e
— — | Inc
1203} 1203{/ S%V 4 w
. ., 11 +139 177 L5 1. (z w)
12¢4 782 36 24 W 8w 19 Mlg— Th
1 4 17
bos, [’ __ 12 _gq14
nd _(12(;2 HERE N 4CW)
1
x|Bf (—M2; M, M,,) Bl (—M2; M, M, )|
%4

3 12 C?/V
+i52 wi(Inwy, — 1) — ( ! + L _ 2+ wh) In ¢?
IV 127 2¢2 W
1 19 133,

T 104 2
120W 36CW 18 w
where two ratios
M? M?
H H

R VI Ve
w VA

and the finite parts of the By function are introduced

2 ! M; P2
By (p*; My, My) :g_—lnﬂ—ngLBo (p% M, My)
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Resummation of large corrections. In order to get high precision of the-

oretical predictions, one has to improve upon the one loop expression.
We begin with the extraction of Ao/ (M;) from Ar. From the defi-

nition of Aa/" (M;),

o (M) = o (312)
VA

and the definition of the e.m. running coupling

a(s)

a

- Ql
1 — —T1IF
4 (S)

we derive the following representation for Ar

: with — 11%(s) = Il (s) — I1;(0)

Ar = Ao (M2)+ {32 - Iy (0) — " (Mi)]

2
Z 47r3W Wil 3
2 2
C 11 5 9¢
W F F - Y2 2 w 2
+ AP+ Dpp = o (1+c)+ Ly CW}
w w

where the superscript [ 4+ 5¢ stands for a summation over leptons and
five light quarks.

NB: The Ao/ (M;) is defined at the scale y = M, — rescale
relevant quantities to the natural value p = M ,. The quantity Ap"

evaluated at © = M, is a gauge invariant object and therefore a

7
good candidate for re-summation. Define the leading and remainder

contributions to Ar
2

Ar; = —ZST;VVApr_MZ
At = oo {58 | =5 =TT (0) T (02
+ (éNf — é — 703{/) lncgv
+A,05V + % — gcsv (1 + civ) + ?LZ;VZ In csv} ‘MZMZ
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The re-summed one-loop representation

2.2 .2
\/EGFMZSWCW _ 1 <*\
T 2G pM?s? c? ’
(1= A0 (M2) = Ar) [14+ Y20 o800 5,
TX

The re-summation of Aa/® (M;) is dictated by renormalization group
arguments. The re-summation of terms containing Ap (Arp) finds
its roots in the two loop EW calculation. The equation (*) is therefore
an improved upon the one-loop result.

Higher orders, in particular QCD corrections of the order O (aa)
and second order electroweak corrections O (GZm{) and O (G%me?)
are applied by means of modifications of the leading and remainder
terms.

ho
rem °

Ar; — Arp + Ar%o, ATrem — ATrem + AT

An iterative solution of (*) for the M, which incorporates second order

electroweak corrections, without and with QCD correction is shown in
the Table.

my [GeV] M, [GeV]

65 300 | 1000
170.1 | 80.445 | 80.349 | 80.256
80.375 | 80.279 | 80.186
175.6 | 80.482|80.386 | 80.291
80.409 | 80.312 | 80.219
181.1 ] 80.521 | 80.423 | 80.329
80.444 | 80.346 | 80.252

Table 1: The W-boson mass, M,, [GeV] in OMS scheme, oy =0 — first entry, o, = 0.120 —
second entry.
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Z Resonance Observables at one loop

Definition 1 Realistic Observables. They are the cross-sections
o/ (s) and asymmetries A/(s) of the reactions

e'e” = (v,2) = ff(n)

calculated for a given value of s = 4E? with all available higher or-
der corrections (QCD, EW), including real and virtual QED pho-
tonic corrections, possibly accounting for kinematical cuts.

Definition 2 Pseudo-Observables. They are related to measured
cross-sections and asymmetries by some de-convolution or unfold-
ing procedure (i.e. undressing of QED corrections). The concept
itself of pseudo-observability is rather difficult to define. One way
to introduce it is to say that the experiments measure some primor-
dial (basically cross-sections and thereby asymmetries also) quan-
titrtes which are then reduced to secondary quantities under some
set of specific assumptions. Within these assumptions, the sec-
ondary quantities, the pseudo-observables, also deserve the label of
observability.
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The Z partial widths
Born diagram and amplitudes

In the V A-basis,
. 3

Zff 4. g
Vil =(2m) i 16 2c,, T [vf Tay 75]

In the L(Q)-basis,

-3
ZfF 4. 9 (3) p
V,u ff:(27'(') 2167-(-20 ")/Nl [If ’7_|_—2QfSW]
W

The partial width of Z — ff decay in the Born approximation

G M3
(0) MYF
1—‘f 6\/_7T Cf [Uf—i_af]

with couplings:

Uf:I](;))_ZQfSI?,Va af:If

QED diagrams and corrections

f

f f

QED diagrams are separately gauge invariant and finite. Their conti-
bution integrated over full bremsstrahlung photon phase space is

ooy o)
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The Z — ff decay amplitude in OMS scheme

One loop diagrams and amplitutes

f f

f f

Figure 13: Process Z — ff; fermion vertex and its counterterms

In the V A-basis,

. 3
7 4. 19
VAT = (2m)'i ———, |F, (M]) + F, (M) ;)
167 Cyrr

In the L(Q)-basis,

_ P
VAT = )i gt I (M) 1 = 200 o (M)

Out of this amplitude one constructs the Z partial widths, Iy, which
can be compared with the experimental data.

The Z width in one loop approximation.

Consider the sum of the Born and of the one loop corrected amplitudes
for the Z boson decay.

e
Vi (M3) o I fravs = 2Qs), f2.4)
ZSWCW
1e
~ 5 far T [1}3)%- - QQfsiv(l + fzq — fZ,L)]
SwCw
where
oo =14 5 Fy g (M2)
Z,L(Q) = 47T3124/ Z,L(Q) \*"' 7

146



Using definition of Ar, rewritten as follows,

¢ _GrM; (1 A )
— —Ar
Sy Cr ,/2\/_ 2

we eliminate the ratio e/(s,c,, ) in favour of the Fermi constant G5
and Fy (M;) receives a shift of —Ar/2. Define the two effective
couplings pé and né ,
o
ph = 1 oy (2P (M) = 53, 6]

47TSW

fo_ - 2 2
5 = 1t g [Fao (M) = Frp (M7)]
w
The one loop improved expression for the partial width of Z — ff
decay in the OMS scheme
GFM3 2 2
_ f (3) f

with effective couplings: pé and

vl = 1Y —2Q;sin® 0l
sin? 9£ﬁ = néssv

Factors R, and R’ accumulate final state QED and QCD corrections.
The lowest order QED + QCD result

3 «Q
Rl =Ri=1+-Q;+*

By now, more terms are computed and really needed

RE—1+ 3a(M§)Q?+ ag(M7) (M2)Q as(M}) L (%(Mg
41 7 7 7

2 2 2 2

RS - 1+304(MZ)Q3( ag(My) oM )Q ag(M7) L c® (04 (M)
41 41 T T
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Re-summation of large corrections in OMS.
Define leading (enchanced) and remainder contribution to pé and /ié,
similarly to what was done for Ar

py = 140l +pl
k! = 1+/<;£+/<cf

7 rem

When we eliminate Ar and normalize amplitudes to the Fermi con-
stant G, all large corrections containing o™ (M;) are automatically
accounted for.

Therefore, to the contrary of what happened in the re-summation of
Ar, here one has to re-sum only m#-enhanced terms . Similarly to Ar

1+ plom
p! !

- m \/iGFMgsz c?

w W

f
T Pr

For k one has to follow a slightly different procedure

2GrM?2s? c? 1
/@JZC = (1 + lﬁ:rfem) 1+ VG Z W W/{i + —-Im-parts
uge’ s,

where Im-parts are enchanced by 72n s second order terms.
The leading contributions are

a02

a 1
p£ = ——TApF, Ké = ——TWApF = Arp,
dm sg, dm s,

Inclusion of higher order irreducible effects, are implemented by a mod-
ification of the leading and of the reminder terms. Similarly to Ar,

Ar; — ATL—O—ATEO

h
Pl — plo + plo

k!l s gl 4 hho

rem rem rem

Numerical results for sin” 0%, are derived with inclusion of re-summation
of leading corrections and of the leading and sub-leading two loop elec-

troweak corrections O (GZmy) and O (G%meg)
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my [GeV] M, [GeV]

65 300 1000
170.1 | 0.23109 | 0.23187 | 0.23253
175.6 | 0.23090 | 0.23168 | 0.23234
181.1 | 0.23070 | 0.23149 | 0.23215

Table 2: The OMS sin” 6.

The process eTe™ — ff
For this process, the one loop QED diargams: QED vertices and v~y

and Z~ boxes, form a gauge invariant subset of all diagrams.
It has to be considered together with QED bremsstrahlung diagrams:

et f et v f
R n R
e” ;o e~ f
et f et f
i, 7o+ g Y
e~ e f

The sum is free of Infrared Divercences.

The residual set of diagrams form the non-QED or weak corrections.

The ideal working strategy is to write the total amplitude as the sum
of dressed v and Z exchange amplitudes plus the contribution from
weak box diagrams, i.e ZZ and WW boxes.

Fermionic loops are separately gauge invarint and may be re-summed.
Bosonic loops have to be understood as expanded to first order.
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One loop corrections and diagrams for eTe™ — ff

Figure 16: Process e*e™ — (Z, A) — ff; self energies and kinetic counterterms

If external fermion masses are neglected, the complete one loop am-
plitude (OLA) can be described by only four scalar functions and by
running electromagnetic constant o (s).

Two ways for representing the dressed amplitude:

— in terms of four scalar form factors, F}; (s, 1)

AOLA _ 6216(3) ]}3)
Z+4 43%/0124/
_4|Qe|3§;% ® Vuv+Egr (s,1) — 4|Qf|33;/7u7+ ® VuFrq (s,1)
+16]QeQr15E v ® Y F o (s, 1)}

XZ(3>{7u7+ ® v+ Fy (s, 1)
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—in terms of the effective couplings p.(s,t) and (s, t)

AQMY = V2GR I TP MX,(3)per (s, ) {mrs @ Yy

Z+4
2 2
_4|Q6|8WK'6(S’ t)Yu @ YV — 4|Qf|swmf(37 DY+ @ Yy

+16]QcQ 1|5 K (8, £) 7 ® Yu)

On top of the Agfﬁ‘ there is the corrected y-exchange amplitude, which
contains, by construction, only the QED running coupling o (s)
4ol (s)
OLA
A7 — —fylu ® ’ylu,
There are residual corrections to the photon exchange diagram but it
is always possible to assign them to the Z exchange amplitude, since
both contain the same Dirac structure v, ® ,.

Effective couplings p and k’s are related to the form factors and to
the quantity Ar

Pef = 1"‘%[}7@ (s,t) — s° Ar]

ke = 14 4WO;3V Fo (5,8) — Fyy (s, 1)
K = ”47:;; Frg (5,8) = Fyy (s,1)
Ko = 14 o [Fog (5,8) — Fyy (5,1)

2
47TSW

Here “1” is due to the Born amplitude which is added.
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Higher order corrections or beyond one loop
EW and mixed corrections
EW two loop leading and next-to-leading corrections

Ap, T'(Z = bb), O (G%mf) ., Barbieri et al. 92
All observables but T'(Z — bb), O (G%m?Mg) . Degrassi et al. 96-95
Implementation into ZFITTER, DB and Degrassi, February 98

Mixed two loop QCD-weak corrections

Ap, O(aag), Djouadi at al. 88
All observables, DB and A.Chizhov 89 ; B.Kniehl 90
rZ-—b, O (Gpozsm?> . FTJR, Fleisher et al. 93

Leading three loop corrections to Ap
Ap, O (Gpaimg) , AFMT, Avdeev et al. 94

Purely QED corrections
Structure Functions (SF) and Flux Function (FF) languages.

o(s)= [T daH (2;5)6((1 — ) s)

where the function H, the so called radiator (or flux function), reads

1 dz l—z
H(x;s) = — D (z;8) D ;
@s) = [, TDE)D ()
H(z;s) = B2’ 16V 461
20 s
— Y- L=In".
p-2w-y, L-m

is known up to O (a?) completely, and O (a*L?) in LLA.
Deserve separate lecture.
QCD, mixed QED xQCD and mixed EW xQCD corrections

A lot of results are known, for vector and axial correction factors
R‘f/, 4, introduced above. Deserve separate course of lectures.
Precision calculations for LEP1 — swang-song of analytic approach!
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Experimental Status of the Standard Model
Outlook and Conclusions

Variety of LEP1 observables
Line shape — fig.1
sin? Oé%pt —  fig.2
Ry versus R, — fig.3
Pulls and x2/dof — fig.4
SM interpretation of precision data — fig.5

LEP1 teams still working on completion of analysis

SLAC, SLD asked for more running time, not yet approved

Variety of LEP2 and non-LEP observables
LEP2 amazing performance — fig.6
LEP2 example, o (e+e_ —> W+W_> —  fig.7
W mass summary — fig.8
M, versus my — 1ig.9 and perspectives

LEP2 two years of measurements more, 1999-2000

500 pb~1 / experiment — AM,, = 30 MeV

FNAL Run II starting year 2000, 2 pb~™1 — AM_, = 40 MeV
Serious hopes that AM_, will be mesured directly

more precise than it is presently known indirectly

BNL, E821, a,, experiment — fig.10

M, Ax? plot  — fig.11 and perspectives

Still waiting for LEP2 last word
Linac 2 x 200 would do a good job
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Conclusions

The Standard Model is completed
theoretically
and has to be ranked as The Standard Theory
which s supposed to completely replace QQED

The Standard Theory is not completed
experimentally.

The Higgs boson 1s its only ingredient

which s still waiting for the discovery,

and it will be inevitably discovered

Where? When?
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e Present members of BRG:
DB, Lida Kalinovskaya, Penka Christova,

Gizo Nanava, Anton Andonov

e [ields of interests:
PHEP,
Calculus for Modern and Future Colliders

e Resent and present work:

— Finishing of works within ZFITTER project for LEP1-
SLC-LEP2. (In close collaboration with Zeuthen

group guided by Tord Riemann. A description of
ZFITTER is published.)

— Participation in just finished LEP2MCWS (1999
2000), last workshop on physics at LEP. (CERN
Yelow Report is published.)

— Creation of BRG-site with mail goals:

x Database ordering of everything done in the field,
by DZRCG and by DB and Giampiero Passarino
while working on the book (form book support);

x Creating the best environment to accomodate re-
sults that are being presently obtained and near-
est future results;

x Creating an environment for potential newcomers,
preferrably diploma and post graduate students;

e Nearest work (still R&D phase):
— Quest for concrete tasks (possibly LC oriented);

— Quest for partners.
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